
The Components Book
for Symfony master

generated on February 20, 2013

The Components Book (master)

This work is licensed under the “Attribution-Share Alike 3.0 Unported” license (http://creativecommons.org/
licenses/by-sa/3.0/).

You are free to share (to copy, distribute and transmit the work), and to remix (to adapt the work) under the
following conditions:

• Attribution: You must attribute the work in the manner specified by the author or licensor (but
not in any way that suggests that they endorse you or your use of the work).

• Share Alike: If you alter, transform, or build upon this work, you may distribute the resulting work
only under the same, similar or a compatible license. For any reuse or distribution, you must make
clear to others the license terms of this work.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor SensioLabs shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in this work.

If you find typos or errors, feel free to report them by creating a ticket on the Symfony ticketing system
(http://github.com/symfony/symfony-docs/issues). Based on tickets and users feedback, this book is
continuously updated.

Contents at a Glance

How to Install and Use the Symfony2 Components..5
The ClassLoader Component ..7
The Config Component ..10
Loading resources ...11
Caching based on resources...13
Defining and processing configuration values...15
The Console Component ..25
Using Console Commands, Shortcuts and Built-in Commands...33
Building a Single Command Application..36
Dialog Helper ...38
Formatter Helper ..42
Progress Helper...44
The CssSelector Component ...46
The DomCrawler Component ...48
The Dependency Injection Component..55
Types of Injection ...60
Working with Container Parameters and Definitions ...63
Compiling the Container...66
Working with Tagged Services ..75
Using a Factory to Create Services ...79
Configuring Services with a Service Configurator ...81
Managing Common Dependencies with Parent Services ...84
Advanced Container Configuration ...89
Container Building Workflow ...91
The Event Dispatcher Component...93
The Generic Event Object ... 103
The Container Aware Event Dispatcher ... 106
The Filesystem Component... 109
The Finder Component... 114
The HttpFoundation Component.. 121
Session Management... 130
Configuring Sessions and Save Handlers .. 136
Testing with Sessions .. 141
Trusting Proxies.. 143
The HttpKernel Component.. 145
The Locale Component... 157

PDF brought to you by
generated on February 20, 2013

Contents at a Glance | iii

http://sensiolabs.com

The Process Component ... 159
The Routing Component .. 161
How to match a route based on the Host ... 168
The Security Component... 170
The Firewall and Security Context... 171
Authentication.. 174
Authorization ... 179
The Serializer Component ... 184
The Stopwatch Component... 187
The Templating Component ... 190
The YAML Component... 193
The YAML Format.. 197

iv | Contents at a Glance Contents at a Glance | 4

Listing 1-1

Listing 1-2

Chapter 1

How to Install and Use the Symfony2
Components

If you're starting a new project (or already have a project) that will use one or more components, the
easiest way to integrate everything is with Composer1. Composer is smart enough to download the
component(s) that you need and take care of autoloading so that you can begin using the libraries
immediately.

This article will take you through using the The Finder Component, though this applies to using any
component.

Using the Finder Component
1. If you're creating a new project, create a new empty directory for it.

2. Create a new file called composer.json and paste the following into it:

1
2
3
4
5

{
"require": {

"symfony/finder": "2.1.*"
}

}

If you already have a composer.json file, just add this line to it. You may also need to adjust the version
(e.g. 2.1.1 or 2.2.*).

You can research the component names and versions at packagist.org2.

3. Install composer3 if you don't already have it present on your system:

4. Download the vendor libraries and generate the vendor/autoload.php file:

1. http://getcomposer.org

2. https://packagist.org/

3. http://getcomposer.org/download/

PDF brought to you by
generated on February 20, 2013

Chapter 1: How to Install and Use the Symfony2 Components | 5

http://sensiolabs.com

Listing 1-3

Listing 1-4

Listing 1-5

1 $ php composer.phar install

5. Write your code:

Once Composer has downloaded the component(s), all you need to do is include the vendor/
autoload.php file that was generated by Composer. This file takes care of autoloading all of the libraries
so that you can use them immediately:

1
2
3
4
5
6
7
8
9

10
11

// File: src/script.php

// update this to the path to the "vendor/" directory, relative to this file
require_once '../vendor/autoload.php';

use Symfony\Component\Finder\Finder;

$finder = new Finder();
$finder->in('../data/');

// ...

If you want to use all of the Symfony2 Components, then instead of adding them one by one:

1
2
3
4
5
6
7

{
"require": {

"symfony/finder": "2.1.*",
"symfony/dom-crawler": "2.1.*",
"symfony/css-selector": "2.1.*"

}
}

you can use:

1
2
3
4
5

{
"require": {

"symfony/symfony": "2.1.*"
}

}

This will include the Bundle and Bridge libraries, which you may not actually need.

Now What?
Now that the component is installed and autoloaded, read the specific component's documentation to
find out more about how to use it.

And have fun!

PDF brought to you by
generated on February 20, 2013

Chapter 1: How to Install and Use the Symfony2 Components | 6

http://sensiolabs.com

Chapter 2

The ClassLoader Component

The ClassLoader Component loads your project classes automatically if they follow some
standard PHP conventions.

Whenever you use an undefined class, PHP uses the autoloading mechanism to delegate the loading of a
file defining the class. Symfony2 provides a "universal" autoloader, which is able to load classes from files
that implement one of the following conventions:

• The technical interoperability standards1 for PHP 5.3 namespaces and class names;
• The PEAR2 naming convention for classes.

If your classes and the third-party libraries you use for your project follow these standards, the Symfony2
autoloader is the only autoloader you will ever need.

Installation
You can install the component in many different ways:

• Use the official Git repository (https://github.com/symfony/ClassLoader3);
• Install it via Composer (symfony/class-loader on Packagist4).

Usage

New in version 2.1: The useIncludePath method was added in Symfony 2.1.

1. http://symfony.com/PSR0

2. http://pear.php.net/manual/en/standards.php

3. https://github.com/symfony/ClassLoader

4. https://packagist.org/packages/symfony/class-loader

PDF brought to you by
generated on February 20, 2013

Chapter 2: The ClassLoader Component | 7

http://sensiolabs.com

Listing 2-1

Listing 2-2

Listing 2-3

Listing 2-4

Registering the UniversalClassLoader5 autoloader is straightforward:

1
2
3
4
5
6
7
8
9

10
11
12

require_once '/path/to/src/Symfony/Component/ClassLoader/UniversalClassLoader.php';

use Symfony\Component\ClassLoader\UniversalClassLoader;

$loader = new UniversalClassLoader();

// You can search the include_path as a last resort.
$loader->useIncludePath(true);

// ... register namespaces and prefixes here - see below

$loader->register();

For minor performance gains class paths can be cached in memory using APC by registering the
ApcUniversalClassLoader6:

1
2
3
4
5
6
7

require_once '/path/to/src/Symfony/Component/ClassLoader/UniversalClassLoader.php';
require_once '/path/to/src/Symfony/Component/ClassLoader/ApcUniversalClassLoader.php';

use Symfony\Component\ClassLoader\ApcUniversalClassLoader;

$loader = new ApcUniversalClassLoader('apc.prefix.');
$loader->register();

The autoloader is useful only if you add some libraries to autoload.

The autoloader is automatically registered in a Symfony2 application (see app/autoload.php).

If the classes to autoload use namespaces, use the registerNamespace()7 or registerNamespaces()8

methods:

1
2
3
4
5
6
7
8

$loader->registerNamespace('Symfony', __DIR__.'/vendor/symfony/symfony/src');

$loader->registerNamespaces(array(
'Symfony' => __DIR__.'/../vendor/symfony/symfony/src',
'Monolog' => __DIR__.'/../vendor/monolog/monolog/src',

));

$loader->register();

For classes that follow the PEAR naming convention, use the registerPrefix()9 or
registerPrefixes()10 methods:

1
2

$loader->registerPrefix('Twig_', __DIR__.'/vendor/twig/twig/lib');

5. http://api.symfony.com/master/Symfony/Component/ClassLoader/UniversalClassLoader.html

6. http://api.symfony.com/master/Symfony/Component/ClassLoader/ApcUniversalClassLoader.html

7. http://api.symfony.com/master/Symfony/Component/ClassLoader/UniversalClassLoader.html#registerNamespace()

8. http://api.symfony.com/master/Symfony/Component/ClassLoader/UniversalClassLoader.html#registerNamespaces()

9. http://api.symfony.com/master/Symfony/Component/ClassLoader/UniversalClassLoader.html#registerPrefix()

10. http://api.symfony.com/master/Symfony/Component/ClassLoader/UniversalClassLoader.html#registerPrefixes()

PDF brought to you by
generated on February 20, 2013

Chapter 2: The ClassLoader Component | 8

http://sensiolabs.com

Listing 2-5

3
4
5
6
7
8

$loader->registerPrefixes(array(
'Swift_' => __DIR__.'/vendor/swiftmailer/swiftmailer/lib/classes',
'Twig_' => __DIR__.'/vendor/twig/twig/lib',

));

$loader->register();

Some libraries also require their root path be registered in the PHP include path
(set_include_path()).

Classes from a sub-namespace or a sub-hierarchy of PEAR classes can be looked for in a location list to
ease the vendoring of a sub-set of classes for large projects:

1
2
3
4
5
6
7
8

$loader->registerNamespaces(array(
'Doctrine\\Common' => __DIR__.'/vendor/doctrine/common/lib',
'Doctrine\\DBAL\\Migrations' => __DIR__.'/vendor/doctrine/migrations/lib',
'Doctrine\\DBAL' => __DIR__.'/vendor/doctrine/dbal/lib',
'Doctrine' => __DIR__.'/vendor/doctrine/orm/lib',

));

$loader->register();

In this example, if you try to use a class in the Doctrine\Common namespace or one of its children, the
autoloader will first look for the class under the doctrine-common directory, and it will then fallback to
the default Doctrine directory (the last one configured) if not found, before giving up. The order of the
registrations is significant in this case.

PDF brought to you by
generated on February 20, 2013

Chapter 2: The ClassLoader Component | 9

http://sensiolabs.com

Chapter 3

The Config Component

Introduction
The Config Component provides several classes to help you find, load, combine, autofill and validate
configuration values of any kind, whatever their source may be (Yaml, XML, INI files, or for instance a
database).

Installation
You can install the component in many different ways:

• Use the official Git repository (https://github.com/symfony/Config1);
• Install it via Composer (symfony/config on Packagist2).

Sections
• Loading resources
• Caching based on resources
• Defining and processing configuration values

1. https://github.com/symfony/Config

2. https://packagist.org/packages/symfony/config

PDF brought to you by
generated on February 20, 2013

Chapter 3: The Config Component | 10

http://sensiolabs.com

Listing 4-1

Listing 4-2

Chapter 4

Loading resources

Locating resources
Loading the configuration normally starts with a search for resources – in most cases: files. This can be
done with the FileLocator1:

1
2
3
4
5
6

use Symfony\Component\Config\FileLocator;

$configDirectories = array(__DIR__.'/app/config');

$locator = new FileLocator($configDirectories);
$yamlUserFiles = $locator->locate('users.yml', null, false);

The locator receives a collection of locations where it should look for files. The first argument of
locate() is the name of the file to look for. The second argument may be the current path and when
supplied, the locator will look in this directory first. The third argument indicates whether or not the
locator should return the first file it has found, or an array containing all matches.

Resource loaders
For each type of resource (Yaml, XML, annotation, etc.) a loader must be defined. Each loader should
implement LoaderInterface2 or extend the abstract FileLoader3 class, which allows for recursively
importing other resources:

1
2
3

use Symfony\Component\Config\Loader\FileLoader;
use Symfony\Component\Yaml\Yaml;

1. http://api.symfony.com/master/Symfony/Component/Config/FileLocator.html

2. http://api.symfony.com/master/Symfony/Component/Config/Loader/LoaderInterface.html

3. http://api.symfony.com/master/Symfony/Component/Config/Loader/FileLoader.html

PDF brought to you by
generated on February 20, 2013

Chapter 4: Loading resources | 11

http://sensiolabs.com

Listing 4-3

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

class YamlUserLoader extends FileLoader
{

public function load($resource, $type = null)
{

$configValues = Yaml::parse($resource);

// ... handle the config values

// maybe import some other resource:

// $this->import('extra_users.yml');
}

public function supports($resource, $type = null)
{

return is_string($resource) && 'yml' === pathinfo(
$resource,
PATHINFO_EXTENSION

);
}

}

Finding the right loader
The LoaderResolver4 receives as its first constructor argument a collection of loaders. When a resource
(for instance an XML file) should be loaded, it loops through this collection of loaders and returns the
loader which supports this particular resource type.

The DelegatingLoader5 makes use of the LoaderResolver6. When it is asked to load a resource, it
delegates this question to the LoaderResolver7. In case the resolver has found a suitable loader, this
loader will be asked to load the resource:

1
2
3
4
5
6
7
8
9

10
11

use Symfony\Component\Config\Loader\LoaderResolver;
use Symfony\Component\Config\Loader\DelegatingLoader;

$loaderResolver = new LoaderResolver(array(new YamlUserLoader($locator)));
$delegatingLoader = new DelegatingLoader($loaderResolver);

$delegatingLoader->load(__DIR__.'/users.yml');
/*
The YamlUserLoader will be used to load this resource,
since it supports files with a "yml" extension
*/

4. http://api.symfony.com/master/Symfony/Component/Config/Loader/LoaderResolver.html

5. http://api.symfony.com/master/Symfony/Component/Config/Loader/DelegatingLoader.html

6. http://api.symfony.com/master/Symfony/Component/Config/Loader/LoaderResolver.html

7. http://api.symfony.com/master/Symfony/Component/Config/Loader/LoaderResolver.html

PDF brought to you by
generated on February 20, 2013

Chapter 4: Loading resources | 12

http://sensiolabs.com

Listing 5-1

Chapter 5

Caching based on resources

When all configuration resources are loaded, you may want to process the configuration values and
combine them all in one file. This file acts like a cache. Its contents don’t have to be regenerated every
time the application runs – only when the configuration resources are modified.

For example, the Symfony Routing component allows you to load all routes, and then dump a URL
matcher or a URL generator based on these routes. In this case, when one of the resources is modified
(and you are working in a development environment), the generated file should be invalidated and
regenerated. This can be accomplished by making use of the ConfigCache1 class.

The example below shows you how to collect resources, then generate some code based on the resources
that were loaded, and write this code to the cache. The cache also receives the collection of resources that
were used for generating the code. By looking at the "last modified" timestamp of these resources, the
cache can tell if it is still fresh or that its contents should be regenerated:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

use Symfony\Component\Config\ConfigCache;
use Symfony\Component\Config\Resource\FileResource;

$cachePath = __DIR__.'/cache/appUserMatcher.php';

// the second argument indicates whether or not you want to use debug mode
$userMatcherCache = new ConfigCache($cachePath, true);

if (!$userMatcherCache->isFresh()) {
// fill this with an array of 'users.yml' file paths
$yamlUserFiles = ...;

$resources = array();

foreach ($yamlUserFiles as $yamlUserFile) {
// see the previous article "Loading resources" to
// see where $delegatingLoader comes from
$delegatingLoader->load($yamlUserFile);
$resources[] = new FileResource($yamlUserFile);

}

1. http://api.symfony.com/master/Symfony/Component/Config/ConfigCache.html

PDF brought to you by
generated on February 20, 2013

Chapter 5: Caching based on resources | 13

http://sensiolabs.com

21
22
23
24
25
26
27
28
29

// the code for the UserMatcher is generated elsewhere
$code = ...;

$userMatcherCache->write($code, $resources);
}

// you may want to require the cached code:
require $cachePath;

In debug mode, a .meta file will be created in the same directory as the cache file itself. This .meta file
contains the serialized resources, whose timestamps are used to determine if the cache is still fresh. When
not in debug mode, the cache is considered to be "fresh" as soon as it exists, and therefore no .meta file
will be generated.

PDF brought to you by
generated on February 20, 2013

Chapter 5: Caching based on resources | 14

http://sensiolabs.com

Listing 6-1

Chapter 6

Defining and processing configuration values

Validating configuration values
After loading configuration values from all kinds of resources, the values and their structure can be
validated using the "Definition" part of the Config Component. Configuration values are usually
expected to show some kind of hierarchy. Also, values should be of a certain type, be restricted in number
or be one of a given set of values. For example, the following configuration (in Yaml) shows a clear
hierarchy and some validation rules that should be applied to it (like: "the value for auto_connect must
be a boolean value"):

1
2
3
4
5
6
7
8
9

10
11
12
13
14

auto_connect: true
default_connection: mysql
connections:

mysql:
host: localhost
driver: mysql
username: user
password: pass

sqlite:
host: localhost
driver: sqlite
memory: true
username: user
password: pass

When loading multiple configuration files, it should be possible to merge and overwrite some values.
Other values should not be merged and stay as they are when first encountered. Also, some keys are only
available when another key has a specific value (in the sample configuration above: the memory key only
makes sense when the driver is sqlite).

PDF brought to you by
generated on February 20, 2013

Chapter 6: Defining and processing configuration values | 15

http://sensiolabs.com

Listing 6-2

Listing 6-3

Defining a hierarchy of configuration values using the TreeBuilder
All the rules concerning configuration values can be defined using the TreeBuilder1.

A TreeBuilder2 instance should be returned from a custom Configuration class which implements the
ConfigurationInterface3:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

namespace Acme\DatabaseConfiguration;

use Symfony\Component\Config\Definition\ConfigurationInterface;
use Symfony\Component\Config\Definition\Builder\TreeBuilder;

class DatabaseConfiguration implements ConfigurationInterface
{

public function getConfigTreeBuilder()
{

$treeBuilder = new TreeBuilder();
$rootNode = $treeBuilder->root('database');

// ... add node definitions to the root of the tree

return $treeBuilder;
}

}

Adding node definitions to the tree

Variable nodes

A tree contains node definitions which can be laid out in a semantic way. This means, using indentation
and the fluent notation, it is possible to reflect the real structure of the configuration values:

1
2
3
4
5
6
7
8
9

10

$rootNode
->children()

->booleanNode('auto_connect')
->defaultTrue()

->end()
->scalarNode('default_connection')

->defaultValue('default')
->end()

->end()
;

The root node itself is an array node, and has children, like the boolean node auto_connect and the
scalar node default_connection. In general: after defining a node, a call to end() takes you one step up
in the hierarchy.

Node type

It is possible to validate the type of a provided value by using the appropriate node definition. Node type
are available for:

1. http://api.symfony.com/master/Symfony/Component/Config/Definition/Builder/TreeBuilder.html

2. http://api.symfony.com/master/Symfony/Component/Config/Definition/Builder/TreeBuilder.html

3. http://api.symfony.com/master/Symfony/Component/Config/Definition/ConfigurationInterface.html

PDF brought to you by
generated on February 20, 2013

Chapter 6: Defining and processing configuration values | 16

http://sensiolabs.com

Listing 6-4

Listing 6-5

• scalar
• boolean
• array
• enum (new in 2.1)
• integer (new in 2.2)
• float (new in 2.2)
• variable (no validation)

and are created with node($name, $type) or their associated shortcut xxxxNode($name) method.

Numeric node constraints

New in version 2.2: The numeric (float and integer) nodes are new in 2.2

Numeric nodes (float and integer) provide two extra constraints - min()4 and max()5 - allowing to
validate the value:

1
2
3
4
5
6
7
8
9

10
11
12
13

$rootNode
->children()

->integerNode('positive_value')
->min(0)

->end()
->floatNode('big_value')

->max(5E45)
->end()
->integerNode('value_inside_a_range')

->min(-50)->max(50)
->end()

->end()
;

Array nodes

It is possible to add a deeper level to the hierarchy, by adding an array node. The array node itself, may
have a pre-defined set of variable nodes:

1
2
3
4
5
6
7
8
9

10
11
12

$rootNode
->children()

->arrayNode('connection')
->children()

->scalarNode('driver')->end()
->scalarNode('host')->end()
->scalarNode('username')->end()
->scalarNode('password')->end()

->end()
->end()

->end()
;

Or you may define a prototype for each node inside an array node:

4. http://api.symfony.com/master/Symfony/Component/Config/Definition/Builder.html#min()

5. http://api.symfony.com/master/Symfony/Component/Config/Definition/Builder.html#max()

PDF brought to you by
generated on February 20, 2013

Chapter 6: Defining and processing configuration values | 17

http://sensiolabs.com

Listing 6-6

Listing 6-7

Listing 6-8

1
2
3
4
5
6
7
8
9

10
11
12
13

$rootNode
->children()

->arrayNode('connections')
->prototype('array')
->children()

->scalarNode('driver')->end()
->scalarNode('host')->end()
->scalarNode('username')->end()
->scalarNode('password')->end()

->end()
->end()

->end()
;

A prototype can be used to add a definition which may be repeated many times inside the current node.
According to the prototype definition in the example above, it is possible to have multiple connection
arrays (containing a driver, host, etc.).

Array node options

Before defining the children of an array node, you can provide options like:
useAttributeAsKey()useAttributeAsKey()

Provide the name of a child node, whose value should be used as the key in the resulting array

requiresAtLeastOneElement()requiresAtLeastOneElement()
There should be at least one element in the array (works only when isRequired() is also called).

An example of this:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

$rootNode
->children()

->arrayNode('parameters')
->isRequired()
->requiresAtLeastOneElement()
->useAttributeAsKey('name')
->prototype('array')

->children()
->scalarNode('value')->isRequired()->end()

->end()
->end()

->end()
->end()

;

In YAML, the configuration might look like this:

1
2
3

database:
parameters:

param1: { value: param1val }

In XML, each parameters node would have a name attribute (along with value), which would be
removed and used as the key for that element in the final array. The useAttributeAsKey is useful for
normalizing how arrays are specified between different formats like XML and YAML.

PDF brought to you by
generated on February 20, 2013

Chapter 6: Defining and processing configuration values | 18

http://sensiolabs.com

Listing 6-9

Listing 6-10

Default and required values
For all node types, it is possible to define default values and replacement values in case a node has a
certain value:
defaultValue()defaultValue()

Set a default value

isRequired()isRequired()
Must be defined (but may be empty)

cannotBeEmpty()cannotBeEmpty()
May not contain an empty value

default*()default*()
(null, true, false), shortcut for defaultValue()

treat*Like()treat*Like()
(null, true, false), provide a replacement value in case the value is *.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

$rootNode
->children()

->arrayNode('connection')
->children()

->scalarNode('driver')
->isRequired()
->cannotBeEmpty()

->end()
->scalarNode('host')

->defaultValue('localhost')
->end()
->scalarNode('username')->end()
->scalarNode('password')->end()
->booleanNode('memory')

->defaultFalse()
->end()

->end()
->end()

->end()
;

Optional Sections

New in version 2.1: The canBeEnabled and canBeDisabled methods are new in Symfony 2.2

If you have entire sections which are optional and can be enabled/disabled, you can take advantage of
the shortcut canBeEnabled()6 and canBeDisabled()7 methods:

6. http://api.symfony.com/master/Symfony/Component/Config/Definition/Builder/ArrayNodeDefinition.html#canBeEnabled()

7. http://api.symfony.com/master/Symfony/Component/Config/Definition/Builder/ArrayNodeDefinition.html#canBeDisabled()

PDF brought to you by
generated on February 20, 2013

Chapter 6: Defining and processing configuration values | 19

http://sensiolabs.com

Listing 6-11

1
2
3
4
5
6
7
8
9

10
11
12
13
14

$arrayNode
->canBeEnabled()

;

// is equivalent to

$arrayNode
->treatFalseLike(array('enabled' => false))
->treatTrueLike(array('enabled' => true))
->treatNullLike(array('enabled' => true))
->children()

->booleanNode('enabled')
->defaultFalse()

;

The canBeDisabled method looks about the same except that the section would be enabled by default.

Merging options
Extra options concerning the merge process may be provided. For arrays:
performNoDeepMerging()performNoDeepMerging()

When the value is also defined in a second configuration array, don’t try to merge an array, but
overwrite it entirely

For all nodes:
cannotBeOverwritten()cannotBeOverwritten()

don’t let other configuration arrays overwrite an existing value for this node

Appending sections
If you have a complex configuration to validate then the tree can grow to be large and you may want to
split it up into sections. You can do this by making a section a separate node and then appending it into
the main tree with append():

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

public function getConfigTreeBuilder()
{

$treeBuilder = new TreeBuilder();
$rootNode = $treeBuilder->root('database');

$rootNode
->children()

->arrayNode('connection')
->children()

->scalarNode('driver')
->isRequired()
->cannotBeEmpty()

->end()
->scalarNode('host')

->defaultValue('localhost')
->end()
->scalarNode('username')->end()
->scalarNode('password')->end()
->booleanNode('memory')

PDF brought to you by
generated on February 20, 2013

Chapter 6: Defining and processing configuration values | 20

http://sensiolabs.com

Listing 6-12

Listing 6-13

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

->defaultFalse()
->end()

->end()
->append($this->addParametersNode())

->end()
->end()

;

return $treeBuilder;
}

public function addParametersNode()
{

$builder = new TreeBuilder();
$node = $builder->root('parameters');

$node
->isRequired()
->requiresAtLeastOneElement()
->useAttributeAsKey('name')
->prototype('array')

->children()
->scalarNode('value')->isRequired()->end()

->end()
->end()

;

return $node;
}

This is also useful to help you avoid repeating yourself if you have sections of the config that are repeated
in different places.

Normalization
When the config files are processed they are first normalized, then merged and finally the tree is used
to validate the resulting array. The normalization process is used to remove some of the differences that
result from different configuration formats, mainly the differences between Yaml and XML.

The separator used in keys is typically _ in Yaml and - in XML. For example, auto_connect in Yaml and
auto-connect. The normalization would make both of these auto_connect.

Another difference between Yaml and XML is in the way arrays of values may be represented. In Yaml
you may have:

1
2

twig:
extensions: ['twig.extension.foo', 'twig.extension.bar']

and in XML:

1
2
3
4

<twig:config>
<twig:extension>twig.extension.foo</twig:extension>
<twig:extension>twig.extension.bar</twig:extension>

</twig:config>

PDF brought to you by
generated on February 20, 2013

Chapter 6: Defining and processing configuration values | 21

http://sensiolabs.com

Listing 6-14

Listing 6-15

Listing 6-16

Listing 6-17

Listing 6-18

Listing 6-19

Listing 6-20

This difference can be removed in normalization by pluralizing the key used in XML. You can specify
that you want a key to be pluralized in this way with fixXmlConfig():

1
2
3
4
5
6
7
8

$rootNode
->fixXmlConfig('extension')
->children()

->arrayNode('extensions')
->prototype('scalar')->end()

->end()
->end()

;

If it is an irregular pluralization you can specify the plural to use as a second argument:

1
2
3
4
5
6

$rootNode
->fixXmlConfig('child', 'children')
->children()

->arrayNode('children')
->end()

;

As well as fixing this, fixXmlConfig ensures that single xml elements are still turned into an array. So
you may have:

1
2

<connection>default</connection>
<connection>extra</connection>

and sometimes only:

1 <connection>default</connection>

By default connection would be an array in the first case and a string in the second making it difficult to
validate. You can ensure it is always an array with with fixXmlConfig.

You can further control the normalization process if you need to. For example, you may want to allow a
string to be set and used as a particular key or several keys to be set explicitly. So that, if everything apart
from name is optional in this config:

1
2
3
4
5
6

connection:
name: my_mysql_connection
host: localhost
driver: mysql
username: user
password: pass

you can allow the following as well:

1 connection: my_mysql_connection

By changing a string value into an associative array with name as the key:

1
2
3
4

$rootNode
->children()

->arrayNode('connection')
->beforeNormalization()

PDF brought to you by
generated on February 20, 2013

Chapter 6: Defining and processing configuration values | 22

http://sensiolabs.com

Listing 6-21

5
6
7
8
9

10
11
12
13
14

->ifString()
->then(function($v) { return array('name'=> $v); })

->end()
->children()

->scalarNode('name')->isRequired()
// ...

->end()
->end()

->end()
;

Validation rules
More advanced validation rules can be provided using the ExprBuilder8. This builder implements a
fluent interface for a well-known control structure. The builder is used for adding advanced validation
rules to node definitions, like:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

$rootNode
->children()

->arrayNode('connection')
->children()

->scalarNode('driver')
->isRequired()
->validate()
->ifNotInArray(array('mysql', 'sqlite', 'mssql'))

->thenInvalid('Invalid database driver "%s"')
->end()

->end()
->end()

->end()
->end()

;

A validation rule always has an "if" part. You can specify this part in the following ways:

• ifTrue()
• ifString()
• ifNull()
• ifArray()
• ifInArray()
• ifNotInArray()
• always()

A validation rule also requires a "then" part:

• then()
• thenEmptyArray()
• thenInvalid()
• thenUnset()

Usually, "then" is a closure. Its return value will be used as a new value for the node, instead of the node's
original value.

8. http://api.symfony.com/master/Symfony/Component/Config/Definition/Builder/ExprBuilder.html

PDF brought to you by
generated on February 20, 2013

Chapter 6: Defining and processing configuration values | 23

http://sensiolabs.com

Listing 6-22

Processing configuration values
The Processor9 uses the tree as it was built using the TreeBuilder10 to process multiple arrays of
configuration values that should be merged. If any value is not of the expected type, is mandatory and
yet undefined, or could not be validated in some other way, an exception will be thrown. Otherwise the
result is a clean array of configuration values:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

use Symfony\Component\Yaml\Yaml;
use Symfony\Component\Config\Definition\Processor;
use Acme\DatabaseConfiguration;

$config1 = Yaml::parse(__DIR__.'/src/Matthias/config/config.yml');
$config2 = Yaml::parse(__DIR__.'/src/Matthias/config/config_extra.yml');

$configs = array($config1, $config2);

$processor = new Processor();
$configuration = new DatabaseConfiguration;
$processedConfiguration = $processor->processConfiguration(

$configuration,
$configs)

;

9. http://api.symfony.com/master/Symfony/Component/Config/Definition/Processor.html

10. http://api.symfony.com/master/Symfony/Component/Config/Definition/Builder/TreeBuilder.html

PDF brought to you by
generated on February 20, 2013

Chapter 6: Defining and processing configuration values | 24

http://sensiolabs.com

Listing 7-1

Chapter 7

The Console Component

The Console component eases the creation of beautiful and testable command line interfaces.

The Console component allows you to create command-line commands. Your console commands can be
used for any recurring task, such as cronjobs, imports, or other batch jobs.

Installation
You can install the component in many different ways:

• Use the official Git repository (https://github.com/symfony/Console1);
• Install it via Composer (symfony/console on Packagist2).

Windows does not support ANSI colors by default so the Console Component detects and disables
colors where Windows does not have support. However, if Windows is not configured with an
ANSI driver and your console commands invoke other scripts which emit ANSI color sequences,
they will be shown as raw escape characters.

To enable ANSI colour support for Windows, please install ANSICON3.

Creating a basic Command
To make a console command that greets you from the command line, create GreetCommand.php and add
the following to it:

1
2

namespace Acme\DemoBundle\Command;

1. https://github.com/symfony/Console

2. https://packagist.org/packages/symfony/console

3. http://adoxa.3eeweb.com/ansicon/

PDF brought to you by
generated on February 20, 2013

Chapter 7: The Console Component | 25

http://sensiolabs.com

Listing 7-2

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

use Symfony\Component\Console\Command\Command;
use Symfony\Component\Console\Input\InputArgument;
use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Input\InputOption;
use Symfony\Component\Console\Output\OutputInterface;

class GreetCommand extends Command
{

protected function configure()
{

$this
->setName('demo:greet')
->setDescription('Greet someone')
->addArgument(

'name',
InputArgument::OPTIONAL,
'Who do you want to greet?'

)
->addOption(

'yell',
null,
InputOption::VALUE_NONE,
'If set, the task will yell in uppercase letters'

)
;

}

protected function execute(InputInterface $input, OutputInterface $output)
{

$name = $input->getArgument('name');
if ($name) {

$text = 'Hello '.$name;
} else {

$text = 'Hello';
}

if ($input->getOption('yell')) {
$text = strtoupper($text);

}

$output->writeln($text);
}

}

You also need to create the file to run at the command line which creates an Application and adds
commands to it:

1
2
3
4
5
6
7
8
9

10

#!/usr/bin/env php
app/console
<?php

use Acme\DemoBundle\Command\GreetCommand;
use Symfony\Component\Console\Application;

$application = new Application();
$application->add(new GreetCommand);
$application->run();

Test the new console command by running the following

PDF brought to you by
generated on February 20, 2013

Chapter 7: The Console Component | 26

http://sensiolabs.com

Listing 7-3

Listing 7-4

Listing 7-5

Listing 7-6

Listing 7-7

Listing 7-8

Listing 7-9

1 $ app/console demo:greet Fabien

This will print the following to the command line:

1 Hello Fabien

You can also use the --yell option to make everything uppercase:

1 $ app/console demo:greet Fabien --yell

This prints:

1 HELLO FABIEN

Coloring the Output

Whenever you output text, you can surround the text with tags to color its output. For example:

1
2
3
4
5
6
7
8
9

10
11

// green text
$output->writeln('<info>foo</info>');

// yellow text
$output->writeln('<comment>foo</comment>');

// black text on a cyan background
$output->writeln('<question>foo</question>');

// white text on a red background
$output->writeln('<error>foo</error>');

It is possible to define your own styles using the class OutputFormatterStyle4:

1
2
3

$style = new OutputFormatterStyle('red', 'yellow', array('bold', 'blink'));
$output->getFormatter()->setStyle('fire', $style);
$output->writeln('<fire>foo</fire>');

Available foreground and background colors are: black, red, green, yellow, blue, magenta, cyan and
white.

And available options are: bold, underscore, blink, reverse and conceal.

You can also set these colors and options inside the tagname:

1
2
3
4
5
6
7
8

// green text
$output->writeln('<fg=green>foo</fg=green>');

// black text on a cyan background
$output->writeln('<fg=black;bg=cyan>foo</fg=black;bg=cyan>');

// bold text on a yellow background
$output->writeln('<bg=yellow;options=bold>foo</bg=yellow;options=bold>');

4. http://api.symfony.com/master/Symfony/Component/Console/Formatter/OutputFormatterStyle.html

PDF brought to you by
generated on February 20, 2013

Chapter 7: The Console Component | 27

http://sensiolabs.com

Listing 7-10

Listing 7-11

Listing 7-12

Listing 7-13

Using Command Arguments
The most interesting part of the commands are the arguments and options that you can make available.
Arguments are the strings - separated by spaces - that come after the command name itself. They are
ordered, and can be optional or required. For example, add an optional last_name argument to the
command and make the name argument required:

1
2
3
4
5
6
7
8
9

10
11
12

$this
// ...
->addArgument(

'name',
InputArgument::REQUIRED,
'Who do you want to greet?'

)
->addArgument(

'last_name',
InputArgument::OPTIONAL,
'Your last name?'

);

You now have access to a last_name argument in your command:

1
2
3

if ($lastName = $input->getArgument('last_name')) {
$text .= ' '.$lastName;

}

The command can now be used in either of the following ways:

1
2

$ app/console demo:greet Fabien
$ app/console demo:greet Fabien Potencier

Using Command Options
Unlike arguments, options are not ordered (meaning you can specify them in any order) and are specified
with two dashes (e.g. --yell - you can also declare a one-letter shortcut that you can call with a single
dash like -y). Options are always optional, and can be setup to accept a value (e.g. dir=src) or simply as
a boolean flag without a value (e.g. yell).

It is also possible to make an option optionally accept a value (so that --yell or yell=loud work).
Options can also be configured to accept an array of values.

For example, add a new option to the command that can be used to specify how many times in a row the
message should be printed:

1
2
3
4
5
6
7

$this
// ...
->addOption(

'iterations',
null,
InputOption::VALUE_REQUIRED,
'How many times should the message be printed?',

PDF brought to you by
generated on February 20, 2013

Chapter 7: The Console Component | 28

http://sensiolabs.com

Listing 7-14

Listing 7-15

Listing 7-16

Listing 7-17

8
9

1
);

Next, use this in the command to print the message multiple times:

1
2
3

for ($i = 0; $i < $input->getOption('iterations'); $i++) {
$output->writeln($text);

}

Now, when you run the task, you can optionally specify a --iterations flag:

1
2

$ app/console demo:greet Fabien
$ app/console demo:greet Fabien --iterations=5

The first example will only print once, since iterations is empty and defaults to 1 (the last argument of
addOption). The second example will print five times.

Recall that options don't care about their order. So, either of the following will work:

1
2

$ app/console demo:greet Fabien --iterations=5 --yell
$ app/console demo:greet Fabien --yell --iterations=5

There are 4 option variants you can use:

Option Value

InputOption::VALUE_IS_ARRAY This option accepts multiple values (e.g. --dir=/foo --dir=/
bar)

InputOption::VALUE_NONE Do not accept input for this option (e.g. --yell)

InputOption::VALUE_REQUIRED This value is required (e.g. --iterations=5), the option itself
is still optional

InputOption::VALUE_OPTIONAL This option may or may not have a value (e.g. yell or
yell=loud)

You can combine VALUE_IS_ARRAY with VALUE_REQUIRED or VALUE_OPTIONAL like this:

1
2
3
4
5
6
7
8
9

$this
// ...
->addOption(

'iterations',
null,
InputOption::VALUE_REQUIRED | InputOption::VALUE_IS_ARRAY,
'How many times should the message be printed?',
1

);

Console Helpers
The console component also contains a set of "helpers" - different small tools capable of helping you with
different tasks:

PDF brought to you by
generated on February 20, 2013

Chapter 7: The Console Component | 29

http://sensiolabs.com

Listing 7-18

Listing 7-19

• Dialog Helper: interactively ask the user for information
• Formatter Helper: customize the output colorization
• Progress Helper: shows a progress bar

Testing Commands
Symfony2 provides several tools to help you test your commands. The most useful one is the
CommandTester5 class. It uses special input and output classes to ease testing without a real console:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

use Symfony\Component\Console\Application;
use Symfony\Component\Console\Tester\CommandTester;
use Acme\DemoBundle\Command\GreetCommand;

class ListCommandTest extends \PHPUnit_Framework_TestCase
{

public function testExecute()
{

$application = new Application();
$application->add(new GreetCommand());

$command = $application->find('demo:greet');
$commandTester = new CommandTester($command);
$commandTester->execute(array('command' => $command->getName()));

$this->assertRegExp('/.../', $commandTester->getDisplay());

// ...
}

}

The getDisplay()6 method returns what would have been displayed during a normal call from the
console.

You can test sending arguments and options to the command by passing them as an array to the
execute()7 method:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

use Symfony\Component\Console\Application;
use Symfony\Component\Console\Tester\CommandTester;
use Acme\DemoBundle\Command\GreetCommand;

class ListCommandTest extends \PHPUnit_Framework_TestCase
{

// ...

public function testNameIsOutput()
{

$application = new Application();
$application->add(new GreetCommand());

$command = $application->find('demo:greet');
$commandTester = new CommandTester($command);
$commandTester->execute(

array('command' => $command->getName(), 'name' => 'Fabien')

5. http://api.symfony.com/master/Symfony/Component/Console/Tester/CommandTester.html

6. http://api.symfony.com/master/Symfony/Component/Console/Tester/CommandTester.html#getDisplay()

7. http://api.symfony.com/master/Symfony/Component/Console/Tester/CommandTester.html#execute()

PDF brought to you by
generated on February 20, 2013

Chapter 7: The Console Component | 30

http://sensiolabs.com

Listing 7-20

18
19
20
21
22

);

$this->assertRegExp('/Fabien/', $commandTester->getDisplay());
}

}

You can also test a whole console application by using ApplicationTester8.

Calling an existing Command
If a command depends on another one being run before it, instead of asking the user to remember the
order of execution, you can call it directly yourself. This is also useful if you want to create a "meta"
command that just runs a bunch of other commands (for instance, all commands that need to be run
when the project's code has changed on the production servers: clearing the cache, generating Doctrine2
proxies, dumping Assetic assets, ...).

Calling a command from another one is straightforward:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

protected function execute(InputInterface $input, OutputInterface $output)
{

$command = $this->getApplication()->find('demo:greet');

$arguments = array(
'command' => 'demo:greet',
'name' => 'Fabien',
'--yell' => true,

);

$input = new ArrayInput($arguments);
$returnCode = $command->run($input, $output);

// ...
}

First, you find()9 the command you want to execute by passing the command name.

Then, you need to create a new ArrayInput10 with the arguments and options you want to pass to the
command.

Eventually, calling the run() method actually executes the command and returns the returned code from
the command (return value from command's execute() method).

Most of the time, calling a command from code that is not executed on the command line is not
a good idea for several reasons. First, the command's output is optimized for the console. But
more important, you can think of a command as being like a controller; it should use the model to
do something and display feedback to the user. So, instead of calling a command from the Web,
refactor your code and move the logic to a new class.

8. http://api.symfony.com/master/Symfony/Component/Console/Tester/ApplicationTester.html

9. http://api.symfony.com/master/Symfony/Component/Console/Application.html#find()

10. http://api.symfony.com/master/Symfony/Component/Console/Input/ArrayInput.html

PDF brought to you by
generated on February 20, 2013

Chapter 7: The Console Component | 31

http://sensiolabs.com

Learn More!
• Using Console Commands, Shortcuts and Built-in Commands
• Building a Single Command Application

PDF brought to you by
generated on February 20, 2013

Chapter 7: The Console Component | 32

http://sensiolabs.com

Listing 8-1

Listing 8-2

Listing 8-3

Chapter 8

Using Console Commands, Shortcuts and Built-
in Commands

In addition to the options you specify for your commands, there are some built-in options as well as a
couple of built-in commands for the console component.

These examples assume you have added a file app/console to run at the cli:

1
2
3
4
5
6
7
8
9

#!/usr/bin/env php
app/console
<?php

use Symfony\Component\Console\Application;

$application = new Application();
// ...
$application->run();

Built-in Commands
There is a built-in command list which outputs all the standard options and the registered commands:

1 $ php app/console list

You can get the same output by not running any command as well

1 $ php app/console

The help command lists the help information for the specified command. For example, to get the help
for the list command:

PDF brought to you by
generated on February 20, 2013

Chapter 8: Using Console Commands, Shortcuts and Built-in Commands | 33

http://sensiolabs.com

Listing 8-4

Listing 8-5

Listing 8-6

Listing 8-7

Listing 8-8

Listing 8-9

Listing 8-10

Listing 8-11

Listing 8-12

Listing 8-13

Listing 8-14

1 $ php app/console help list

Running help without specifying a command will list the global options:

1 $ php app/console help

Global Options
You can get help information for any command with the --help option. To get help for the list
command:

1
2

$ php app/console list --help
$ php app/console list -h

You can suppress output with:

1
2

$ php app/console list --quiet
$ php app/console list -q

You can get more verbose messages (if this is supported for a command) with:

1
2

$ php app/console list --verbose
$ php app/console list -v

If you set the optional arguments to give your application a name and version:

1 $application = new Application('Acme Console Application', '1.2');

then you can use:

1
2

$ php app/console list --version
$ php app/console list -V

to get this information output:

1 Acme Console Application version 1.2

If you do not provide both arguments then it will just output:

1 console tool

You can force turning on ANSI output coloring with:

1 $ php app/console list --ansi

or turn it off with:

1 $ php app/console list --no-ansi

PDF brought to you by
generated on February 20, 2013

Chapter 8: Using Console Commands, Shortcuts and Built-in Commands | 34

http://sensiolabs.com

Listing 8-15

Listing 8-16

Listing 8-17

You can suppress any interactive questions from the command you are running with:

1
2

$ php app/console list --no-interaction
$ php app/console list -n

Shortcut Syntax
You do not have to type out the full command names. You can just type the shortest unambiguous name
to run a command. So if there are non-clashing commands, then you can run help like this:

1 $ php app/console h

If you have commands using : to namespace commands then you just have to type the shortest
unambiguous text for each part. If you have created the demo:greet as shown in The Console Component
then you can run it with:

1 $ php app/console d:g Fabien

If you enter a short command that's ambiguous (i.e. there are more than one command that match), then
no command will be run and some suggestions of the possible commands to choose from will be output.

PDF brought to you by
generated on February 20, 2013

Chapter 8: Using Console Commands, Shortcuts and Built-in Commands | 35

http://sensiolabs.com

Listing 9-1

Chapter 9

Building a Single Command Application

When building a command line tool, you may not need to provide several commands. In such case,
having to pass the command name each time is tedious. Fortunately, it is possible to remove this need by
extending the application:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

namespace Acme\Tool;

use Symfony\Component\Console\Application;
use Symfony\Component\Console\Input\InputInterface;

class MyApplication extends Application
{

/**
* Gets the name of the command based on input.
*
* @param InputInterface $input The input interface
*
* @return string The command name
*/
protected function getCommandName(InputInterface $input)
{

// This should return the name of your command.
return 'my_command';

}

/**
* Gets the default commands that should always be available.
*
* @return array An array of default Command instances
*/
protected function getDefaultCommands()
{

// Keep the core default commands to have the HelpCommand
// which is used when using the --help option
$defaultCommands = parent::getDefaultCommands();

$defaultCommands[] = new MyCommand();

PDF brought to you by
generated on February 20, 2013

Chapter 9: Building a Single Command Application | 36

http://sensiolabs.com

33
34
35
36

return $defaultCommands;
}

}

When calling your console script, the command MyCommand will then always be used, without having
to pass its name.

PDF brought to you by
generated on February 20, 2013

Chapter 9: Building a Single Command Application | 37

http://sensiolabs.com

Listing 10-1

Listing 10-2

Chapter 10

Dialog Helper

The DialogHelper1 provides functions to ask the user for more information. It is included in the default
helper set, which you can get by calling getHelperSet()2:

1 $dialog = $this->getHelperSet()->get('dialog');

All the methods inside the Dialog Helper have an OutputInterface3 as first the argument, the question
as the second argument and the default value as last argument.

Asking the User for confirmation
Suppose you want to confirm an action before actually executing it. Add the following to your command:

1
2
3
4
5
6
7
8

// ...
if (!$dialog->askConfirmation(

$output,
'<question>Continue with this action?</question>',
false

)) {
return;

}

In this case, the user will be asked "Continue with this action", and will return true if the user answers
with y or false in any other case. The third argument to askConfirmation is the default value to return if
the user doesn't enter any input.

1. http://api.symfony.com/master/Symfony/Component/Console/Helper/DialogHelper.html

2. http://api.symfony.com/master/Symfony/Component/Console/Command/Command.html#getHelperSet()

3. http://api.symfony.com/master/Symfony/Component/Console/Output/OutputInterface.html

PDF brought to you by
generated on February 20, 2013

Chapter 10: Dialog Helper | 38

http://sensiolabs.com

Listing 10-3

Listing 10-4

Listing 10-5

Asking the User for Information
You can also ask question with more than a simple yes/no answer. For instance, if you want to know a
bundle name, you can add this to your command:

1
2
3
4
5
6

// ...
$bundle = $dialog->ask(

$output,
'Please enter the name of the bundle',
'AcmeDemoBundle'

);

The user will be asked "Please enter the name of the bundle". She can type some name which will be
returned by the ask method. If she leaves it empty, the default value (AcmeDemoBundle here) is returned.

Hiding the User's Response

New in version 2.2: The askHiddenResponse method was added in Symfony 2.2.

You can also ask a question and hide the response. This is particularly convenient for passwords:

1
2
3
4
5
6

$dialog = $this->getHelperSet()->get('dialog');
$password = $dialog->askHiddenResponse(

$output,
'What is the database password?',
false

);

When you ask for a hidden response, Symfony will use either a binary, change stty mode or use
another trick to hide the response. If none is available, it will fallback and allow the response to
be visible unless you pass false as the third argument like in the example above. In this case, a
RuntimeException would be thrown.

Validating the Answer
You can even validate the answer. For instance, in the last example you asked for the bundle name.
Following the Symfony2 naming conventions, it should be suffixed with Bundle. You can validate that
by using the askAndValidate()4 method:

1
2
3
4
5
6
7

// ...
$bundle = $dialog->askAndValidate(

$output,
'Please enter the name of the bundle',
function ($answer) {

if ('Bundle' !== substr($answer, -6)) {
throw new \RunTimeException(

4. http://api.symfony.com/master/Symfony/Component/Console/Helper/DialogHelper.html#askAndValidate()

PDF brought to you by
generated on February 20, 2013

Chapter 10: Dialog Helper | 39

http://sensiolabs.com

Listing 10-6

Listing 10-7

8
9

10
11
12
13
14
15

'The name of the bundle should be suffixed with \'Bundle\''
);

}
return $answer;

},
false,
'AcmeDemoBundle'

);

This methods has 2 new arguments, the full signature is:

1
2
3
4
5
6
7

askAndValidate(
OutputInterface $output,
string|array $question,
callback $validator,
integer $attempts = false,
string $default = null

)

The $validator is a callback which handles the validation. It should throw an exception if there is
something wrong. The exception message is displayed in the console, so it is a good practice to put some
useful information in it. The callback function should also return the value of the user's input if the
validation was successful.

You can set the max number of times to ask in the $attempts argument. If you reach this max number it
will use the default value, which is given in the last argument. Using false means the amount of attempts
is infinite. The user will be asked as long as he provides an invalid answer and will only be able to proceed
if her input is valid.

Hiding the User's Response

New in version 2.2: The askHiddenResponseAndValidate method was added in Symfony 2.2.

You can also ask and validate a hidden response:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

$dialog = $this->getHelperSet()->get('dialog');

$validator = function ($value) {
if (trim($value) == '') {

throw new \Exception('The password can not be empty');
}

};

$password = $dialog->askHiddenResponseAndValidate(
$output,
'Please enter the name of the widget',
$validator,
20,
false

);

If you want to allow the response to be visible if it cannot be hidden for some reason, pass true as the
fifth argument.

PDF brought to you by
generated on February 20, 2013

Chapter 10: Dialog Helper | 40

http://sensiolabs.com

Listing 10-8

Let the user choose from a list of Answers

New in version 2.2: The select()5 method was added in Symfony 2.2.

If you have a predefined set of answers the user can choose from, you could use the ask method described
above or, to make sure the user provided a correct answer, the askAndValidate method. Both have the
disadvantage that you need to handle incorrect values yourself.

Instead, you can use the select()6 method, which makes sure that the user can only enter a valid string
from a predefined list:

1
2
3
4
5
6
7
8
9

10
11
12

$dialog = $app->getHelperSet()->get('dialog');
$colors = array('red', 'blue', 'yellow');

$color = $dialog->select(
$output,
'Please select your favorite color (default to red)',
$colors,
0

);
$output->writeln('You have just selected: ' . $colors[$color]);

// ... do something with the color

The option which should be selected by default is provided with the fourth parameter. The default is
null, which means that no option is the default one.

If the user enters an invalid string, an error message is shown and the user is asked to provide the answer
another time, until she enters a valid string or the maximum attempts is reached (which you can define
in the fifth parameter). The default value for the attempts is false, which means infinite attempts. You
can define your own error message in the sixth parameter.

5. http://api.symfony.com/master/Symfony/Component/Console/Helper/DialogHelper.html#select()

6. http://api.symfony.com/master/Symfony/Component/Console/Helper/DialogHelper.html#select()

PDF brought to you by
generated on February 20, 2013

Chapter 10: Dialog Helper | 41

http://sensiolabs.com

Listing 11-1

Listing 11-2

Listing 11-3

Chapter 11

Formatter Helper

The Formatter helpers provides functions to format the output with colors. You can do more advanced
things with this helper than you can in Coloring the Output.

The FormatterHelper1 is included in the default helper set, which you can get by calling
getHelperSet()2:

1 $formatter = $this->getHelperSet()->get('formatter');

The methods return a string, which you'll usually render to the console by passing it to the
OutputInterface::writeln3 method.

Print Messages in a Section
Symfony offers a defined style when printing a message that belongs to some "section". It prints the
section in color and with brackets around it and the actual message to the right of this. Minus the color,
it looks like this:

1 [SomeSection] Here is some message related to that section

To reproduce this style, you can use the formatSection()4 method:

1
2
3
4
5

$formattedLine = $formatter->formatSection(
'SomeSection',
'Here is some message related to that section'

);
$output->writeln($formattedLine);

1. http://api.symfony.com/master/Symfony/Component/Console/Helper/FormatterHelper.html

2. http://api.symfony.com/master/Symfony/Component/Console/Command/Command.html#getHelperSet()

3. http://api.symfony.com/master/Symfony/Component/Console/Output/OutputInterface.html#writeln()

4. http://api.symfony.com/master/Symfony/Component/Console/Helper/FormatterHelper.html#formatSection()

PDF brought to you by
generated on February 20, 2013

Chapter 11: Formatter Helper | 42

http://sensiolabs.com

Listing 11-4

Print Messages in a Block
Sometimes you want to be able to print a whole block of text with a background color. Symfony uses this
when printing error messages.

If you print your error message on more than one line manually, you will notice that the background is
only as long as each individual line. Use the formatBlock()5 to generate a block output:

1
2
3

$errorMessages = array('Error!', 'Something went wrong');
$formattedBlock = $formatter->formatBlock($errorMessages, 'error');
$output->writeln($formattedBlock);

As you can see, passing an array of messages to the formatBlock()6 method creates the desired output.
If you pass true as third parameter, the block will be formatted with more padding (one blank line above
and below the messages and 2 spaces on the left and right).

The exact "style" you use in the block is up to you. In this case, you're using the pre-defined error style,
but there are other styles, or you can create your own. See Coloring the Output.

5. http://api.symfony.com/master/Symfony/Component/Console/Helper/FormatterHelper.html#formatBlock()

6. http://api.symfony.com/master/Symfony/Component/Console/Helper/FormatterHelper.html#formatBlock()

PDF brought to you by
generated on February 20, 2013

Chapter 11: Formatter Helper | 43

http://sensiolabs.com

Listing 12-1

Listing 12-2

Chapter 12

Progress Helper

New in version 2.2: The progress helper was added in Symfony 2.2.

When executing longer-running commands, it may be helpful to show progress information, which
updates as your command runs:

../../../_images/progress.png

To display progress details, use the ProgressHelper1, pass it a total number of units, and advance the
progress as your command executes:

1
2
3
4
5
6
7
8
9

10
11
12

$progress = $this->getHelperSet()->get('progress');

$progress->start($output, 50);
$i = 0;
while ($i++ < 50) {

// ... do some work

// advance the progress bar 1 unit
$progress->advance();

}

$progress->finish();

The appearance of the progress output can be customized as well, with a number of different levels of
verbosity. Each of these displays different possible items - like percentage completion, a moving progress
bar, or current/total information (e.g. 10/50):

1
2

$progress->setFormat(ProgressHelper::FORMAT_QUIET);
$progress->setFormat(ProgressHelper::FORMAT_NORMAL);

1. http://api.symfony.com/master/Symfony/Component/Console/Helper/ProgressHelper.html

PDF brought to you by
generated on February 20, 2013

Chapter 12: Progress Helper | 44

http://sensiolabs.com

Listing 12-3

Listing 12-4

3
4
5
6
7

$progress->setFormat(ProgressHelper::FORMAT_VERBOSE);
$progress->setFormat(ProgressHelper::FORMAT_QUIET_NOMAX);
// the default value
$progress->setFormat(ProgressHelper::FORMAT_NORMAL_NOMAX);
$progress->setFormat(ProgressHelper::FORMAT_VERBOSE_NOMAX);

You can also control the different characters and the width used for the progress bar:

1
2
3
4
5
6

// the finished part of the bar
$progress->setBarCharacter('<comment>=</comment>');
// the unfinished part of the bar
$progress->setEmptyBarCharacter(' ');
$progress->setProgressCharacter('|');
$progress->setBarWidth(50);

To see other available options, check the API documentation for ProgressHelper2.

For performance reasons, be careful to not set the total number of steps to a high number. For
example, if you're iterating over a large number of items, consider a smaller "step" number that
updates on only some iterations:

1
2
3
4
5
6
7
8
9

10

$progress->start($output, 500);
$i = 0;
while ($i++ < 50000) {

// ... do some work

// advance every 100 iterations
if ($i % 100 == 0) {

$progress->advance();
}

}

2. http://api.symfony.com/master/Symfony/Component/Console/Helper/ProgressHelper.html

PDF brought to you by
generated on February 20, 2013

Chapter 12: Progress Helper | 45

http://sensiolabs.com

Chapter 13

The CssSelector Component

The CssSelector Component converts CSS selectors to XPath expressions.

Installation
You can install the component in several different ways:

• Use the official Git repository (https://github.com/symfony/CssSelector1);
• Install it via Composer (symfony/css-selector on Packagist2).

Usage

Why use CSS selectors?

When you're parsing an HTML or an XML document, by far the most powerful method is XPath.

XPath expressions are incredibly flexible, so there is almost always an XPath expression that will find
the element you need. Unfortunately, they can also become very complicated, and the learning curve is
steep. Even common operations (such as finding an element with a particular class) can require long and
unwieldy expressions.

Many developers -- particularly web developers -- are more comfortable using CSS selectors to find
elements. As well as working in stylesheets, CSS selectors are used in Javascript with the
querySelectorAll function and in popular Javascript libraries such as jQuery, Prototype and MooTools.

CSS selectors are less powerful than XPath, but far easier to write, read and understand. Since they are
less powerful, almost all CSS selectors can be converted to an XPath equivalent. This XPath expression
can then be used with other functions and classes that use XPath to find elements in a document.

1. https://github.com/symfony/CssSelector

2. https://packagist.org/packages/symfony/css-selector

PDF brought to you by
generated on February 20, 2013

Chapter 13: The CssSelector Component | 46

http://sensiolabs.com

Listing 13-1

Listing 13-2

The CssSelector component

The component's only goal is to convert CSS selectors to their XPath equivalents:

1
2
3

use Symfony\Component\CssSelector\CssSelector;

print CssSelector::toXPath('div.item > h4 > a');

This gives the following output:

1 descendant-or-self::div[contains(concat(' ',normalize-space(@class), ' '), ' item ')]/h4/a

You can use this expression with, for instance, DOMXPath3 or SimpleXMLElement4 to find elements in a
document.

The Crawler::filter()5 method uses the CssSelector component to find elements based on a
CSS selector string. See the The DomCrawler Component for more details.

Limitations of the CssSelector component

Not all CSS selectors can be converted to XPath equivalents.

There are several CSS selectors that only make sense in the context of a web-browser.

• link-state selectors: :link, :visited, :target
• selectors based on user action: :hover, :focus, :active
• UI-state selectors: :enabled, :disabled, :indeterminate (however, :checked and

:unchecked are available)

Pseudo-elements (:before, :after, :first-line, :first-letter) are not supported because they
select portions of text rather than elements.

Several pseudo-classes are not yet supported:

• :lang(language)
• root
• *:first-of-type, *:last-of-type, *:nth-of-type, *:nth-last-of-type, *:only-of-

type. (These work with an element name (e.g. li:first-of-type) but not with *.

3. http://php.net/manual/en/class.domxpath.php

4. http://php.net/manual/en/class.simplexmlelement.php

5. http://api.symfony.com/master/Symfony/Component/DomCrawler/Crawler.html#filter()

PDF brought to you by
generated on February 20, 2013

Chapter 13: The CssSelector Component | 47

http://sensiolabs.com

Listing 14-1

Chapter 14

The DomCrawler Component

The DomCrawler Component eases DOM navigation for HTML and XML documents.

While possible, the DomCrawler component is not designed for manipulation of the DOM or re-
dumping HTML/XML.

Installation
You can install the component in many different ways:

• Use the official Git repository (https://github.com/symfony/DomCrawler1);
• Install it via Composer (symfony/dom-crawler on Packagist2).

Usage
The Crawler3 class provides methods to query and manipulate HTML and XML documents.

An instance of the Crawler represents a set (SplObjectStorage4) of DOMElement5 objects, which are
basically nodes that you can traverse easily:

1
2
3
4

use Symfony\Component\DomCrawler\Crawler;

$html = <<<'HTML'
<!DOCTYPE html>

1. https://github.com/symfony/DomCrawler

2. https://packagist.org/packages/symfony/dom-crawler

3. http://api.symfony.com/master/Symfony/Component/DomCrawler/Crawler.html

4. http://php.net/manual/en/class.splobjectstorage.php

5. http://php.net/manual/en/class.domelement.php

PDF brought to you by
generated on February 20, 2013

Chapter 14: The DomCrawler Component | 48

http://sensiolabs.com

Listing 14-2

Listing 14-3

Listing 14-4

5
6
7
8
9

10
11
12
13
14
15
16
17

<html>
<body>

<p class="message">Hello World!</p>
<p>Hello Crawler!</p>

</body>
</html>
HTML;

$crawler = new Crawler($html);

foreach ($crawler as $domElement) {
print $domElement->nodeName;

}

Specialized Link6 and Form7 classes are useful for interacting with html links and forms as you traverse
through the HTML tree.

Node Filtering

Using XPath expressions is really easy:

1 $crawler = $crawler->filterXPath('descendant-or-self::body/p');

DOMXPath::query is used internally to actually perform an XPath query.

Filtering is even easier if you have the CssSelector Component installed. This allows you to use jQuery-
like selectors to traverse:

1 $crawler = $crawler->filter('body > p');

Anonymous function can be used to filter with more complex criteria:

1
2
3
4

$crawler = $crawler->filter('body > p')->reduce(function ($node, $i) {
// filter even nodes
return ($i % 2) == 0;

});

To remove a node the anonymous function must return false.

All filter methods return a new Crawler8 instance with filtered content.

Node Traversing

Access node by its position on the list:

6. http://api.symfony.com/master/Symfony/Component/DomCrawler/Link.html

7. http://api.symfony.com/master/Symfony/Component/DomCrawler/Form.html

8. http://api.symfony.com/master/Symfony/Component/DomCrawler/Crawler.html

PDF brought to you by
generated on February 20, 2013

Chapter 14: The DomCrawler Component | 49

http://sensiolabs.com

Listing 14-5

Listing 14-6

Listing 14-7

Listing 14-8

Listing 14-9

Listing 14-10

Listing 14-11

Listing 14-12

1 $crawler->filter('body > p')->eq(0);

Get the first or last node of the current selection:

1
2

$crawler->filter('body > p')->first();
$crawler->filter('body > p')->last();

Get the nodes of the same level as the current selection:

1 $crawler->filter('body > p')->siblings();

Get the same level nodes after or before the current selection:

1
2

$crawler->filter('body > p')->nextAll();
$crawler->filter('body > p')->previousAll();

Get all the child or parent nodes:

1
2

$crawler->filter('body')->children();
$crawler->filter('body > p')->parents();

All the traversal methods return a new Crawler9 instance.

Accessing Node Values

Access the value of the first node of the current selection:

1 $message = $crawler->filterXPath('//body/p')->text();

Access the attribute value of the first node of the current selection:

1 $class = $crawler->filterXPath('//body/p')->attr('class');

Extract attribute and/or node values from the list of nodes:

1
2
3
4

$attributes = $crawler
->filterXpath('//body/p')
->extract(array('_text', 'class'))

;

Special attribute _text represents a node value.

Call an anonymous function on each node of the list:

9. http://api.symfony.com/master/Symfony/Component/DomCrawler/Crawler.html

PDF brought to you by
generated on February 20, 2013

Chapter 14: The DomCrawler Component | 50

http://sensiolabs.com

Listing 14-13

Listing 14-14

Listing 14-15

Listing 14-16

1
2
3

$nodeValues = $crawler->filter('p')->each(function ($node, $i) {
return $node->nodeValue;

});

The anonymous function receives the position and the node as arguments. The result is an array of values
returned by the anonymous function calls.

Adding the Content

The crawler supports multiple ways of adding the content:

1
2
3
4
5
6
7
8
9

10

$crawler = new Crawler('<html><body /></html>');

$crawler->addHtmlContent('<html><body /></html>');
$crawler->addXmlContent('<root><node /></root>');

$crawler->addContent('<html><body /></html>');
$crawler->addContent('<root><node /></root>', 'text/xml');

$crawler->add('<html><body /></html>');
$crawler->add('<root><node /></root>');

As the Crawler's implementation is based on the DOM extension, it is also able to interact with native
DOMDocument10, DOMNodeList11 and DOMNode12 objects:

1
2
3
4
5
6
7
8
9

10

$document = new \DOMDocument();
$document->loadXml('<root><node /><node /></root>');
$nodeList = $document->getElementsByTagName('node');
$node = $document->getElementsByTagName('node')->item(0);

$crawler->addDocument($document);
$crawler->addNodeList($nodeList);
$crawler->addNodes(array($node));
$crawler->addNode($node);
$crawler->add($document);

Manipulating and Dumping a Crawler

These methods on the Crawler are intended to initially populate your Crawler and aren't intended
to be used to further manipulate a DOM (though this is possible). However, since the Crawler
is a set of DOMElement13 objects, you can use any method or property available on DOMElement14,
DOMNode15 or DOMDocument16. For example, you could get the HTML of a Crawler with something
like this:

1
2
3
4
5

$html = '';

foreach ($crawler as $domElement) {
$html.= $domElement->ownerDocument->saveHTML();

}

10. http://php.net/manual/en/class.domdocument.php

11. http://php.net/manual/en/class.domnodelist.php

12. http://php.net/manual/en/class.domnode.php

13. http://php.net/manual/en/class.domelement.php

PDF brought to you by
generated on February 20, 2013

Chapter 14: The DomCrawler Component | 51

http://sensiolabs.com

Listing 14-17

Listing 14-18

Listing 14-19

Listing 14-20

Form and Link support

Special treatment is given to links and forms inside the DOM tree.

Links

To find a link by name (or a clickable image by its alt attribute), use the selectLink method on an
existing crawler. This returns a Crawler instance with just the selected link(s). Calling link() gives you
a special Link17 object:

1
2
3
4
5

$linksCrawler = $crawler->selectLink('Go elsewhere...');
$link = $linksCrawler->link();

// or do this all at once
$link = $crawler->selectLink('Go elsewhere...')->link();

The Link18 object has several useful methods to get more information about the selected link itself:

1
2

// return the proper URI that can be used to make another request
$uri = $link->getUri();

The getUri() is especially useful as it cleans the href value and transforms it into how it should
really be processed. For example, for a link with href="#foo", this would return the full URI of
the current page suffixed with #foo. The return from getUri() is always a full URI that you can
act on.

Forms

Special treatment is also given to forms. A selectButton() method is available on the Crawler which
returns another Crawler that matches a button (input[type=submit], input[type=image], or a button)
with the given text. This method is especially useful because you can use it to return a Form19 object that
represents the form that the button lives in:

1
2
3
4
5
6

$form = $crawler->selectButton('validate')->form();

// or "fill" the form fields with data
$form = $crawler->selectButton('validate')->form(array(

'name' => 'Ryan',
));

The Form20 object has lots of very useful methods for working with forms:

1
2
3

$uri = $form->getUri();

$method = $form->getMethod();

14. http://php.net/manual/en/class.domelement.php

15. http://php.net/manual/en/class.domnode.php

16. http://php.net/manual/en/class.domdocument.php

17. http://api.symfony.com/master/Symfony/Component/DomCrawler/Link.html

18. http://api.symfony.com/master/Symfony/Component/DomCrawler/Link.html

19. http://api.symfony.com/master/Symfony/Component/DomCrawler/Form.html

20. http://api.symfony.com/master/Symfony/Component/DomCrawler/Form.html

PDF brought to you by
generated on February 20, 2013

Chapter 14: The DomCrawler Component | 52

http://sensiolabs.com

Listing 14-21

Listing 14-22

Listing 14-23

Listing 14-24

The getUri()21 method does more than just return the action attribute of the form. If the form method
is GET, then it mimics the browser's behavior and returns the action attribute followed by a query string
of all of the form's values.

You can virtually set and get values on the form:

1
2
3
4
5
6
7
8
9

10
11
12

// set values on the form internally
$form->setValues(array(

'registration[username]' => 'symfonyfan',
'registration[terms]' => 1,

));

// get back an array of values - in the "flat" array like above
$values = $form->getValues();

// returns the values like PHP would see them,
// where "registration" is its own array
$values = $form->getPhpValues();

To work with multi-dimensional fields:

1
2
3
4
5

<form>
<input name="multi[]" />
<input name="multi[]" />
<input name="multi[dimensional]" />

</form>

You must specify the fully qualified name of the field:

1
2
3
4
5
6
7
8

// Set a single field
$form->setValue('multi[0]', 'value');

// Set multiple fields at once
$form->setValue('multi', array(

1 => 'value',
'dimensional' => 'an other value'

));

This is great, but it gets better! The Form object allows you to interact with your form like a browser,
selecting radio values, ticking checkboxes, and uploading files:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

$form['registration[username]']->setValue('symfonyfan');

// check or uncheck a checkbox
$form['registration[terms]']->tick();
$form['registration[terms]']->untick();

// select an option
$form['registration[birthday][year]']->select(1984);

// select many options from a "multiple" select or checkboxes
$form['registration[interests]']->select(array('symfony', 'cookies'));

// even fake a file upload
$form['registration[photo]']->upload('/path/to/lucas.jpg');

21. http://api.symfony.com/master/Symfony/Component/DomCrawler/Form.html#getUri()

PDF brought to you by
generated on February 20, 2013

Chapter 14: The DomCrawler Component | 53

http://sensiolabs.com

Listing 14-25

Listing 14-26

Listing 14-27

What's the point of doing all of this? If you're testing internally, you can grab the information off of your
form as if it had just been submitted by using the PHP values:

1
2

$values = $form->getPhpValues();
$files = $form->getPhpFiles();

If you're using an external HTTP client, you can use the form to grab all of the information you need to
create a POST request for the form:

1
2
3
4
5
6

$uri = $form->getUri();
$method = $form->getMethod();
$values = $form->getValues();
$files = $form->getFiles();

// now use some HTTP client and post using this information

One great example of an integrated system that uses all of this is Goutte22. Goutte understands the
Symfony Crawler object and can use it to submit forms directly:

1
2
3
4
5
6
7
8
9

10
11
12
13

use Goutte\Client;

// make a real request to an external site
$client = new Client();
$crawler = $client->request('GET', 'https://github.com/login');

// select the form and fill in some values
$form = $crawler->selectButton('Log in')->form();
$form['login'] = 'symfonyfan';
$form['password'] = 'anypass';

// submit that form
$crawler = $client->submit($form);

22. https://github.com/fabpot/goutte

PDF brought to you by
generated on February 20, 2013

Chapter 14: The DomCrawler Component | 54

http://sensiolabs.com

Listing 15-1

Chapter 15

The Dependency Injection Component

The Dependency Injection component allows you to standardize and centralize the way objects
are constructed in your application.

For an introduction to Dependency Injection and service containers see Service Container

Installation
You can install the component in many different ways:

• Use the official Git repository (https://github.com/symfony/DependencyInjection1);
• Install it via Composer (symfony/dependency-injection on Packagist2).

Basic Usage
You might have a simple class like the following Mailer that you want to make available as a service:

1
2
3
4
5
6
7
8
9

10
11

class Mailer
{

private $transport;

public function __construct()
{

$this->transport = 'sendmail';
}

// ...
}

You can register this in the container as a service:

1. https://github.com/symfony/DependencyInjection

2. https://packagist.org/packages/symfony/dependency-injection

PDF brought to you by
generated on February 20, 2013

Chapter 15: The Dependency Injection Component | 55

http://sensiolabs.com

Listing 15-2

Listing 15-3

Listing 15-4

Listing 15-5

Listing 15-6

1
2
3
4

use Symfony\Component\DependencyInjection\ContainerBuilder;

$container = new ContainerBuilder();
$container->register('mailer', 'Mailer');

An improvement to the class to make it more flexible would be to allow the container to set the
transport used. If you change the class so this is passed into the constructor:

1
2
3
4
5
6
7
8
9

10
11

class Mailer
{

private $transport;

public function __construct($transport)
{

$this->transport = $transport;
}

// ...
}

Then you can set the choice of transport in the container:

1
2
3
4
5
6

use Symfony\Component\DependencyInjection\ContainerBuilder;

$container = new ContainerBuilder();
$container

->register('mailer', 'Mailer')
->addArgument('sendmail');

This class is now much more flexible as you have separated the choice of transport out of the
implementation and into the container.

Which mail transport you have chosen may be something other services need to know about. You can
avoid having to change it in multiple places by making it a parameter in the container and then referring
to this parameter for the Mailer service's constructor argument:

1
2
3
4
5
6
7

use Symfony\Component\DependencyInjection\ContainerBuilder;

$container = new ContainerBuilder();
$container->setParameter('mailer.transport', 'sendmail');
$container

->register('mailer', 'Mailer')
->addArgument('%mailer.transport%');

Now that the mailer service is in the container you can inject it as a dependency of other classes. If you
have a NewsletterManager class like this:

1
2
3
4
5
6
7
8
9

class NewsletterManager
{

private $mailer;

public function __construct(\Mailer $mailer)
{

$this->mailer = $mailer;
}

PDF brought to you by
generated on February 20, 2013

Chapter 15: The Dependency Injection Component | 56

http://sensiolabs.com

Listing 15-7

Listing 15-8

Listing 15-9

Listing 15-10

10
11

// ...
}

Then you can register this as a service as well and pass the mailer service into it:

1
2
3
4
5
6
7
8
9

10
11
12
13

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Reference;

$container = new ContainerBuilder();

$container->setParameter('mailer.transport', 'sendmail');
$container

->register('mailer', 'Mailer')
->addArgument('%mailer.transport%');

$container
->register('newsletter_manager', 'NewsletterManager')
->addArgument(new Reference('mailer'));

If the NewsletterManager did not require the Mailer and injecting it was only optional then you could
use setter injection instead:

1
2
3
4
5
6
7
8
9

10
11

class NewsletterManager
{

private $mailer;

public function setMailer(\Mailer $mailer)
{

$this->mailer = $mailer;
}

// ...
}

You can now choose not to inject a Mailer into the NewsletterManager. If you do want to though then
the container can call the setter method:

1
2
3
4
5
6
7
8
9

10
11
12
13

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Reference;

$container = new ContainerBuilder();

$container->setParameter('mailer.transport', 'sendmail');
$container

->register('mailer', 'Mailer')
->addArgument('%mailer.transport%');

$container
->register('newsletter_manager', 'NewsletterManager')
->addMethodCall('setMailer', array(new Reference('mailer')));

You could then get your newsletter_manager service from the container like this:

1
2
3

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Reference;

PDF brought to you by
generated on February 20, 2013

Chapter 15: The Dependency Injection Component | 57

http://sensiolabs.com

Listing 15-11

Listing 15-12

Listing 15-13

4
5
6
7
8

$container = new ContainerBuilder();

// ...

$newsletterManager = $container->get('newsletter_manager');

Avoiding Your Code Becoming Dependent on the Container
Whilst you can retrieve services from the container directly it is best to minimize this. For example, in the
NewsletterManager you injected the mailer service in rather than asking for it from the container. You
could have injected the container in and retrieved the mailer service from it but it would then be tied to
this particular container making it difficult to reuse the class elsewhere.

You will need to get a service from the container at some point but this should be as few times as possible
at the entry point to your application.

Setting Up the Container with Configuration Files
As well as setting up the services using PHP as above you can also use configuration files. To do this you
also need to install the Config Component.

Loading an XML config file:

1
2
3
4
5
6
7

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\Config\FileLocator;
use Symfony\Component\DependencyInjection\Loader\XmlFileLoader;

$container = new ContainerBuilder();
$loader = new XmlFileLoader($container, new FileLocator(__DIR__));
$loader->load('services.xml');

Loading a YAML config file:

1
2
3
4
5
6
7

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\Config\FileLocator;
use Symfony\Component\DependencyInjection\Loader\YamlFileLoader;

$container = new ContainerBuilder();
$loader = new YamlFileLoader($container, new FileLocator(__DIR__));
$loader->load('services.yml');

If you want to load YAML config files then you will also need to install The YAML component.

The newsletter_manager and mailer services can be set up using config files:

src/Acme/HelloBundle/Resources/config/services.yml
parameters:

...
mailer.transport: sendmail

PDF brought to you by
generated on February 20, 2013

Chapter 15: The Dependency Injection Component | 58

http://sensiolabs.com

services:
mailer:

class: Mailer
arguments: [%mailer.transport%]

newsletter_manager:
class: NewsletterManager
calls:

- [setMailer, [@mailer]]

PDF brought to you by
generated on February 20, 2013

Chapter 15: The Dependency Injection Component | 59

http://sensiolabs.com

Listing 16-1

Listing 16-2

Chapter 16

Types of Injection

Making a class's dependencies explicit and requiring that they be injected into it is a good way of making
a class more reusable, testable and decoupled from others.

There are several ways that the dependencies can be injected. Each injection point has advantages
and disadvantages to consider, as well as different ways of working with them when using the service
container.

Constructor Injection
The most common way to inject dependencies is via a class's constructor. To do this you need to add an
argument to the constructor signature to accept the dependency:

1
2
3
4
5
6
7
8
9

10
11

class NewsletterManager
{

protected $mailer;

public function __construct(\Mailer $mailer)
{

$this->mailer = $mailer;
}

// ...
}

You can specify what service you would like to inject into this in the service container configuration:

services:
my_mailer:

...
newsletter_manager:

class: NewsletterManager
arguments: [@my_mailer]

PDF brought to you by
generated on February 20, 2013

Chapter 16: Types of Injection | 60

http://sensiolabs.com

Listing 16-3

Listing 16-4

Type hinting the injected object means that you can be sure that a suitable dependency has
been injected. By type-hinting, you'll get a clear error immediately if an unsuitable dependency
is injected. By type hinting using an interface rather than a class you can make the choice of
dependency more flexible. And assuming you only use methods defined in the interface, you can
gain that flexibility and still safely use the object.

There are several advantages to using constructor injection:

• If the dependency is a requirement and the class cannot work without it then injecting it via
the constructor ensures it is present when the class is used as the class cannot be constructed
without it.

• The constructor is only ever called once when the object is created, so you can be sure that the
dependency will not change during the object's lifetime.

These advantages do mean that constructor injection is not suitable for working with optional
dependencies. It is also more difficult to use in combination with class hierarchies: if a class uses
constructor injection then extending it and overriding the constructor becomes problematic.

Setter Injection
Another possible injection point into a class is by adding a setter method that accepts the dependency:

1
2
3
4
5
6
7
8
9

10
11

class NewsletterManager
{

protected $mailer;

public function setMailer(\Mailer $mailer)
{

$this->mailer = $mailer;
}

// ...
}

services:
my_mailer:

...
newsletter_manager:

class: NewsletterManager
calls:

- [setMailer, [@my_mailer]]

This time the advantages are:

• Setter injection works well with optional dependencies. If you do not need the dependency,
then just do not call the setter.

• You can call the setter multiple times. This is particularly useful if the method adds the
dependency to a collection. You can then have a variable number of dependencies.

The disadvantages of setter injection are:

• The setter can be called more than just at the time of construction so you cannot be sure the
dependency is not replaced during the lifetime of the object (except by explicitly writing the
setter method to check if has already been called).

PDF brought to you by
generated on February 20, 2013

Chapter 16: Types of Injection | 61

http://sensiolabs.com

Listing 16-5

Listing 16-6

• You cannot be sure the setter will be called and so you need to add checks that any required
dependencies are injected.

Property Injection
Another possibility is just setting public fields of the class directly:

1
2
3
4
5
6

class NewsletterManager
{

public $mailer;

// ...
}

services:
my_mailer:

...
newsletter_manager:

class: NewsletterManager
properties:

mailer: @my_mailer

There are mainly only disadvantages to using property injection, it is similar to setter injection but with
these additional important problems:

• You cannot control when the dependency is set at all, it can be changed at any point in the
object's lifetime.

• You cannot use type hinting so you cannot be sure what dependency is injected except by
writing into the class code to explicitly test the class instance before using it.

But, it is useful to know that this can be done with the service container, especially if you are working
with code that is out of your control, such as in a third party library, which uses public properties for its
dependencies.

PDF brought to you by
generated on February 20, 2013

Chapter 16: Types of Injection | 62

http://sensiolabs.com

Listing 17-1

Listing 17-2

Listing 17-3

Listing 17-4

Chapter 17

Working with Container Parameters and
Definitions

Getting and Setting Container Parameters
Working with container parameters is straight forward using the container's accessor methods for
parameters. You can check if a parameter has been defined in the container with:

1 $container->hasParameter($name);

You can retrieve parameters set in the container with:

1 $container->getParameter($name);

and set a parameter in the container with:

1 $container->setParameter($name, $value);

Getting and Setting Service Definitions
There are also some helpful methods for working with the service definitions.

To find out if there is a definition for a service id:

1 $container->hasDefinition($serviceId);

This is useful if you only want to do something if a particular definition exists.

You can retrieve a definition with:

PDF brought to you by
generated on February 20, 2013

Chapter 17: Working with Container Parameters and Definitions | 63

http://sensiolabs.com

Listing 17-5

Listing 17-6

Listing 17-7

Listing 17-8

Listing 17-9

Listing 17-10

Listing 17-11

Listing 17-12

1 $container->getDefinition($serviceId);

or:

1 $container->findDefinition($serviceId);

which unlike getDefinition() also resolves aliases so if the $serviceId argument is an alias you will
get the underlying definition.

The service definitions themselves are objects so if you retrieve a definition with these methods and make
changes to it these will be reflected in the container. If, however, you are creating a new definition then
you can add it to the container using:

1 $container->setDefinition($id, $definition);

Working with a definition

Creating a new definition

If you need to create a new definition rather than manipulate one retrieved from then container then the
definition class is Definition1.

Class

First up is the class of a definition, this is the class of the object returned when the service is requested
from the container.

To find out what class is set for a definition:

1 $definition->getClass();

and to set a different class:

1 $definition->setClass($class); // Fully qualified class name as string

Constructor Arguments

To get an array of the constructor arguments for a definition you can use:

1 $definition->getArguments();

or to get a single argument by its position:

1
2

$definition->getArgument($index);
//e.g. $definition->getArguments(0) for the first argument

You can add a new argument to the end of the arguments array using:

1. http://api.symfony.com/master/Symfony/Component/DependencyInjection/Definition.html

PDF brought to you by
generated on February 20, 2013

Chapter 17: Working with Container Parameters and Definitions | 64

http://sensiolabs.com

Listing 17-13

Listing 17-14

Listing 17-15

Listing 17-16

Listing 17-17

Listing 17-18

1 $definition->addArgument($argument);

The argument can be a string, an array, a service parameter by using %parameter_name% or a service id
by using

1
2
3
4
5

use Symfony\Component\DependencyInjection\Reference;

// ...

$definition->addArgument(new Reference('service_id'));

In a similar way you can replace an already set argument by index using:

1 $definition->replaceArgument($index, $argument);

You can also replace all the arguments (or set some if there are none) with an array of arguments:

1 $definition->replaceArguments($arguments);

Method Calls

If the service you are working with uses setter injection then you can manipulate any method calls in the
definitions as well.

You can get an array of all the method calls with:

1 $definition->getMethodCalls();

Add a method call with:

1 $definition->addMethodCall($method, $arguments);

Where $method is the method name and $arguments is an array of the arguments to call the method with.
The arguments can be strings, arrays, parameters or service ids as with the constructor arguments.

You can also replace any existing method calls with an array of new ones with:

1 $definition->setMethodCalls($methodCalls);

There are more examples of specific ways of working with definitions in the PHP code blocks of the
configuration examples on pages such as Using a Factory to Create Services and Managing Common
Dependencies with Parent Services.

PDF brought to you by
generated on February 20, 2013

Chapter 17: Working with Container Parameters and Definitions | 65

http://sensiolabs.com

Listing 18-1

Listing 18-2

Chapter 18

Compiling the Container

The service container can be compiled for various reasons. These reasons include checking for any
potential issues such as circular references and making the container more efficient by resolving
parameters and removing unused services.

It is compiled by running:

1 $container->compile();

The compile method uses Compiler Passes for the compilation. The Dependency Injection component
comes with several passes which are automatically registered for compilation. For example the
CheckDefinitionValidityPass1 checks for various potential issues with the definitions that have been
set in the container. After this and several other passes that check the container's validity, further
compiler passes are used to optimize the configuration before it is cached. For example, private services
and abstract services are removed, and aliases are resolved.

Managing Configuration with Extensions
As well as loading configuration directly into the container as shown in The Dependency Injection
Component, you can manage it by registering extensions with the container. The first step in the
compilation process is to load configuration from any extension classes registered with the container.
Unlike the configuration loaded directly, they are only processed when the container is compiled. If
your application is modular then extensions allow each module to register and manage their own service
configuration.

The extensions must implement ExtensionInterface2 and can be registered with the container with:

1 $container->registerExtension($extension);

The main work of the extension is done in the load method. In the load method you can load
configuration from one or more configuration files as well as manipulate the container definitions using
the methods shown in Working with Container Parameters and Definitions.

1. http://api.symfony.com/master/Symfony/Component/DependencyInjection/Compiler/CheckDefinitionValidityPass.html

2. http://api.symfony.com/master/Symfony/Component/DependencyInjection/Extension/ExtensionInterface.html

PDF brought to you by
generated on February 20, 2013

Chapter 18: Compiling the Container | 66

http://sensiolabs.com

Listing 18-3

Listing 18-4

Listing 18-5

Listing 18-6

The load method is passed a fresh container to set up, which is then merged afterwards into the
container it is registered with. This allows you to have several extensions managing container definitions
independently. The extensions do not add to the containers configuration when they are added but are
processed when the container's compile method is called.

A very simple extension may just load configuration files into the container:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Loader\XmlFileLoader;
use Symfony\Component\DependencyInjection\Extension\ExtensionInterface;
use Symfony\Component\Config\FileLocator;

class AcmeDemoExtension implements ExtensionInterface
{

public function load(array $configs, ContainerBuilder $container)
{

$loader = new XmlFileLoader(
$container,
new FileLocator(__DIR__.'/../Resources/config')

);
$loader->load('services.xml');

}

// ...
}

This does not gain very much compared to loading the file directly into the overall container being
built. It just allows the files to be split up amongst the modules/bundles. Being able to affect the
configuration of a module from configuration files outside of the module/bundle is needed to make a
complex application configurable. This can be done by specifying sections of config files loaded directly
into the container as being for a particular extension. These sections on the config will not be processed
directly by the container but by the relevant Extension.

The Extension must specify a getAlias method to implement the interface:

1
2
3
4
5
6
7
8
9

10
11

// ...

class AcmeDemoExtension implements ExtensionInterface
{

// ...

public function getAlias()
{

return 'acme_demo';
}

}

For YAML configuration files specifying the alias for the Extension as a key will mean that those values
are passed to the Extension's load method:

1
2
3
4

...
acme_demo:

foo: fooValue
bar: barValue

If this file is loaded into the configuration then the values in it are only processed when the container is
compiled at which point the Extensions are loaded:

PDF brought to you by
generated on February 20, 2013

Chapter 18: Compiling the Container | 67

http://sensiolabs.com

Listing 18-7

Listing 18-8

Listing 18-9

1
2
3
4
5
6
7
8
9

10
11
12

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\Config\FileLocator;
use Symfony\Component\DependencyInjection\Loader\YamlFileLoader;

$container = new ContainerBuilder();
$container->registerExtension(new AcmeDemoExtension);

$loader = new YamlFileLoader($container, new FileLocator(__DIR__));
$loader->load('config.yml');

// ...
$container->compile();

When loading a config file that uses an extension alias as a key, the extension must already have
been registered with the container builder or an exception will be thrown.

The values from those sections of the config files are passed into the first argument of the load method
of the extension:

1
2
3
4
5

public function load(array $configs, ContainerBuilder $container)
{

$foo = $configs[0]['foo']; //fooValue
$bar = $configs[0]['bar']; //barValue

}

The $configs argument is an array containing each different config file that was loaded into the
container. You are only loading a single config file in the above example but it will still be within an array.
The array will look like this:

1
2
3
4
5
6

array(
array(

'foo' => 'fooValue',
'bar' => 'barValue',

)
)

Whilst you can manually manage merging the different files, it is much better to use the Config
Component to merge and validate the config values. Using the configuration processing you could access
the config value this way:

1
2
3
4
5
6
7
8
9

10
11
12

use Symfony\Component\Config\Definition\Processor;
// ...

public function load(array $configs, ContainerBuilder $container)
{

$configuration = new Configuration();
$processor = new Processor();
$config = $processor->processConfiguration($configuration, $configs);

$foo = $config['foo']; //fooValue
$bar = $config['bar']; //barValue

PDF brought to you by
generated on February 20, 2013

Chapter 18: Compiling the Container | 68

http://sensiolabs.com

Listing 18-10

Listing 18-11

Listing 18-12

13
14

// ...
}

There are a further two methods you must implement. One to return the XML namespace so that the
relevant parts of an XML config file are passed to the extension. The other to specify the base path to
XSD files to validate the XML configuration:

1
2
3
4
5
6
7
8
9

public function getXsdValidationBasePath()
{

return __DIR__.'/../Resources/config/';
}

public function getNamespace()
{

return 'http://www.example.com/symfony/schema/';
}

XSD validation is optional, returning false from the getXsdValidationBasePath method will
disable it.

The XML version of the config would then look like this:

1
2
3
4
5
6
7
8
9

10
11
12

<?xml version="1.0" ?>
<container xmlns="http://symfony.com/schema/dic/services"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:acme_demo="http://www.example.com/symfony/schema/"
xsi:schemaLocation="http://www.example.com/symfony/schema/ http://www.example.com/

symfony/schema/hello-1.0.xsd">

<acme_demo:config>
<acme_demo:foo>fooValue</acme_hello:foo>
<acme_demo:bar>barValue</acme_demo:bar>

</acme_demo:config>

</container>

In the Symfony2 full stack framework there is a base Extension class which implements these
methods as well as a shortcut method for processing the configuration. See How to expose a
Semantic Configuration for a Bundle for more details.

The processed config value can now be added as container parameters as if it were listed in a parameters
section of the config file but with the additional benefit of merging multiple files and validation of the
configuration:

1
2
3
4
5
6
7

public function load(array $configs, ContainerBuilder $container)
{

$configuration = new Configuration();
$processor = new Processor();
$config = $processor->processConfiguration($configuration, $configs);

$container->setParameter('acme_demo.FOO', $config['foo']);

PDF brought to you by
generated on February 20, 2013

Chapter 18: Compiling the Container | 69

http://sensiolabs.com

Listing 18-13

Listing 18-14

8
9

10
// ...

}

More complex configuration requirements can be catered for in the Extension classes. For example, you
may choose to load a main service configuration file but also load a secondary one only if a certain
parameter is set:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

public function load(array $configs, ContainerBuilder $container)
{

$configuration = new Configuration();
$processor = new Processor();
$config = $processor->processConfiguration($configuration, $configs);

$loader = new XmlFileLoader(
$container,
new FileLocator(__DIR__.'/../Resources/config')

);
$loader->load('services.xml');

if ($config['advanced']) {
$loader->load('advanced.xml');

}
}

Just registering an extension with the container is not enough to get it included in the processed
extensions when the container is compiled. Loading config which uses the extension's alias as a
key as in the above examples will ensure it is loaded. The container builder can also be told to load
it with its loadFromExtension()3 method:

1
2
3
4
5
6
7

use Symfony\Component\DependencyInjection\ContainerBuilder;

$container = new ContainerBuilder();
$extension = new AcmeDemoExtension();
$container->registerExtension($extension);
$container->loadFromExtension($extension->getAlias());
$container->compile();

If you need to manipulate the configuration loaded by an extension then you cannot do it from
another extension as it uses a fresh container. You should instead use a compiler pass which works
with the full container after the extensions have been processed.

Prepending Configuration passed to the Extension

New in version 2.2: The ability to prepend the configuration of a bundle is new in Symfony 2.2.

3. http://api.symfony.com/master/Symfony/Component/DependencyInjection/ContainerBuilder.html#loadFromExtension()

PDF brought to you by
generated on February 20, 2013

Chapter 18: Compiling the Container | 70

http://sensiolabs.com

Listing 18-15

Listing 18-16

Listing 18-17

An Extension can prepend the configuration of any Bundle before the load() method is called by
implementing PrependExtensionInterface4:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

use Symfony\Component\DependencyInjection\Extension\PrependExtensionInterface;
// ...

class AcmeDemoExtension implements ExtensionInterface, PrependExtensionInterface
{

// ...

public function prepend()
{

// ...

$container->prependExtensionConfig($name, $config);

// ...
}

}

For more details, see How to simplify configuration of multiple Bundles, which is specific to the Symfony2
Framework, but contains more details about this feature.

Creating a Compiler Pass
You can also create and register your own compiler passes with the container. To create a compiler pass it
needs to implement the CompilerPassInterface5 interface. The compiler pass gives you an opportunity
to manipulate the service definitions that have been compiled. This can be very powerful, but is not
something needed in everyday use.

The compiler pass must have the process method which is passed the container being compiled:

1
2
3
4
5
6
7

class CustomCompilerPass
{

public function process(ContainerBuilder $container)
{

// ...
}

}

The container's parameters and definitions can be manipulated using the methods described in the
Working with Container Parameters and Definitions. One common thing to do in a compiler pass is to
search for all services that have a certain tag in order to process them in some way or dynamically plug
each into some other service.

Registering a Compiler Pass
You need to register your custom pass with the container. Its process method will then be called when
the container is compiled:

4. http://api.symfony.com/master/Symfony/Component/DependencyInjection/Extension/PrependExtensionInterface.html

5. http://api.symfony.com/master/Symfony/Component/DependencyInjection/Compiler/CompilerPassInterface.html

PDF brought to you by
generated on February 20, 2013

Chapter 18: Compiling the Container | 71

http://sensiolabs.com

Listing 18-18

Listing 18-19

1
2
3
4

use Symfony\Component\DependencyInjection\ContainerBuilder;

$container = new ContainerBuilder();
$container->addCompilerPass(new CustomCompilerPass);

Compiler passes are registered differently if you are using the full stack framework, see How to
work with Compiler Passes in Bundles for more details.

Controlling the Pass Ordering

The default compiler passes are grouped into optimization passes and removal passes. The optimization
passes run first and include tasks such as resolving references within the definitions. The removal passes
perform tasks such as removing private aliases and unused services. You can choose where in the order
any custom passes you add are run. By default they will be run before the optimization passes.

You can use the following constants as the second argument when registering a pass with the container
to control where it goes in the order:

• PassConfig::TYPE_BEFORE_OPTIMIZATION
• PassConfig::TYPE_OPTIMIZE
• PassConfig::TYPE_BEFORE_REMOVING
• PassConfig::TYPE_REMOVE
• PassConfig::TYPE_AFTER_REMOVING

For example, to run your custom pass after the default removal passes have been run:

1
2
3
4
5
6
7
8

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Compiler\PassConfig;

$container = new ContainerBuilder();
$container->addCompilerPass(

new CustomCompilerPass,
PassConfig::TYPE_AFTER_REMOVING

);

Dumping the Configuration for Performance
Using configuration files to manage the service container can be much easier to understand than using
PHP once there are a lot of services. This ease comes at a price though when it comes to performance as
the config files need to be parsed and the PHP configuration built from them. The compilation process
makes the container more efficient but it takes time to run. You can have the best of both worlds though
by using configuration files and then dumping and caching the resulting configuration. The PhpDumper
makes dumping the compiled container easy:

1
2
3
4
5
6

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Dumper\PhpDumper;

$file = __DIR__ .'/cache/container.php';

if (file_exists($file)) {

PDF brought to you by
generated on February 20, 2013

Chapter 18: Compiling the Container | 72

http://sensiolabs.com

Listing 18-20

Listing 18-21

7
8
9

10
11
12
13
14
15
16

require_once $file;
$container = new ProjectServiceContainer();

} else {
$container = new ContainerBuilder();
// ...
$container->compile();

$dumper = new PhpDumper($container);
file_put_contents($file, $dumper->dump());

}

ProjectServiceContainer is the default name given to the dumped container class, you can change this
though this with the class option when you dump it:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

// ...
$file = __DIR__ .'/cache/container.php';

if (file_exists($file)) {
require_once $file;
$container = new MyCachedContainer();

} else {
$container = new ContainerBuilder();
// ...
$container->compile();

$dumper = new PhpDumper($container);
file_put_contents(

$file,
$dumper->dump(array('class' => 'MyCachedContainer'))

);
}

You will now get the speed of the PHP configured container with the ease of using configuration files.
Additionally dumping the container in this way further optimizes how the services are created by the
container.

In the above example you will need to delete the cached container file whenever you make any changes.
Adding a check for a variable that determines if you are in debug mode allows you to keep the speed
of the cached container in production but getting an up to date configuration whilst developing your
application:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// ...

// based on something in your project
$isDebug = ...;

$file = __DIR__ .'/cache/container.php';

if (!$isDebug && file_exists($file)) {
require_once $file;
$container = new MyCachedContainer();

} else {
$container = new ContainerBuilder();
// ...
$container->compile();

if (!$isDebug) {

PDF brought to you by
generated on February 20, 2013

Chapter 18: Compiling the Container | 73

http://sensiolabs.com

Listing 18-22

17
18
19
20
21
22
23

$dumper = new PhpDumper($container);
file_put_contents(

$file,
$dumper->dump(array('class' => 'MyCachedContainer'))

);
}

}

This could be further improved by only recompiling the container in debug mode when changes have
been made to its configuration rather than on every request. This can be done by caching the resource
files used to configure the container in the way described in "Caching based on resources" in the config
component documentation.

You do not need to work out which files to cache as the container builder keeps track of all the resources
used to configure it, not just the configuration files but the extension classes and compiler passes as well.
This means that any changes to any of these files will invalidate the cache and trigger the container being
rebuilt. You just need to ask the container for these resources and use them as metadata for the cache:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

// ...

// based on something in your project
$isDebug = ...;

$file = __DIR__ .'/cache/container.php';
$containerConfigCache = new ConfigCache($file, $isDebug);

if (!$containerConfigCache->isFresh()) {
$containerBuilder = new ContainerBuilder();
// ...
$containerBuilder->compile();

$dumper = new PhpDumper($containerBuilder);
$containerConfigCache->write(

$dumper->dump(array('class' => 'MyCachedContainer')),
$containerBuilder->getResources()

);
}

require_once $file;
$container = new MyCachedContainer();

Now the cached dumped container is used regardless of whether debug mode is on or not. The difference
is that the ConfigCache is set to debug mode with its second constructor argument. When the cache is
not in debug mode the cached container will always be used if it exists. In debug mode, an additional
metadata file is written with the timestamps of all the resource files. These are then checked to see if the
files have changed, if they have the cache will be considered stale.

In the full stack framework the compilation and caching of the container is taken care of for you.

PDF brought to you by
generated on February 20, 2013

Chapter 18: Compiling the Container | 74

http://sensiolabs.com

Listing 19-1

Listing 19-2

Chapter 19

Working with Tagged Services

Tags are a generic string (along with some options) that can be applied to any service. By themselves,
tags don't actually alter the functionality of your services in any way. But if you choose to, you can ask a
container builder for a list of all services that were tagged with some specific tag. This is useful in compiler
passes where you can find these services and use or modify them in some specific way.

For example, if you are using Swift Mailer you might imagine that you want to implement a "transport
chain", which is a collection of classes implementing \Swift_Transport. Using the chain, you'll want
Swift Mailer to try several ways of transporting the message until one succeeds.

To begin with, define the TransportChain class:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

class TransportChain
{

private $transports;

public function __construct()
{

$this->transports = array();
}

public function addTransport(\Swift_Transport $transport)
{

$this->transports[] = $transport;
}

}

Then, define the chain as a service:

1
2
3
4
5
6

parameters:
acme_mailer.transport_chain.class: TransportChain

services:
acme_mailer.transport_chain:

class: "%acme_mailer.transport_chain.class%"

PDF brought to you by
generated on February 20, 2013

Chapter 19: Working with Tagged Services | 75

http://sensiolabs.com

Listing 19-3

Listing 19-4

Define Services with a Custom Tag
Now you might want several of the \Swift_Transport classes to be instantiated and added to the chain
automatically using the addTransport() method. For example you may add the following transports as
services:

services:
acme_mailer.transport.smtp:

class: \Swift_SmtpTransport
arguments:

- %mailer_host%
tags:

- { name: acme_mailer.transport }
acme_mailer.transport.sendmail:

class: \Swift_SendmailTransport
tags:

- { name: acme_mailer.transport }

Notice that each was given a tag named acme_mailer.transport. This is the custom tag that you'll use
in your compiler pass. The compiler pass is what makes this tag "mean" something.

Create a CompilerPass
Your compiler pass can now ask the container for any services with the custom tag:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Compiler\CompilerPassInterface;
use Symfony\Component\DependencyInjection\Reference;

class TransportCompilerPass implements CompilerPassInterface
{

public function process(ContainerBuilder $container)
{

if (!$container->hasDefinition('acme_mailer.transport_chain')) {
return;

}

$definition = $container->getDefinition(
'acme_mailer.transport_chain'

);

$taggedServices = $container->findTaggedServiceIds(
'acme_mailer.transport'

);
foreach ($taggedServices as $id => $attributes) {

$definition->addMethodCall(
'addTransport',
array(new Reference($id))

);
}

}
}

The process() method checks for the existence of the acme_mailer.transport_chain service, then
looks for all services tagged acme_mailer.transport. It adds to the definition of the
acme_mailer.transport_chain service a call to addTransport() for each "acme_mailer.transport"
service it has found. The first argument of each of these calls will be the mailer transport service itself.

PDF brought to you by
generated on February 20, 2013

Chapter 19: Working with Tagged Services | 76

http://sensiolabs.com

Listing 19-5

Listing 19-6

Listing 19-7

Register the Pass with the Container
You also need to register the pass with the container, it will then be run when the container is compiled:

1
2
3
4

use Symfony\Component\DependencyInjection\ContainerBuilder;

$container = new ContainerBuilder();
$container->addCompilerPass(new TransportCompilerPass);

Compiler passes are registered differently if you are using the full stack framework. See How to
work with Compiler Passes in Bundles for more details.

Adding additional attributes on Tags
Sometimes you need additional information about each service that's tagged with your tag. For example,
you might want to add an alias to each TransportChain.

To begin with, change the TransportChain class:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

class TransportChain
{

private $transports;

public function __construct()
{

$this->transports = array();
}

public function addTransport(\Swift_Transport $transport, $alias)
{

$this->transports[$alias] = $transport;
}

public function getTransport($alias)
{

if (array_key_exists($alias, $this->transports)) {
return $this->transports[$alias];

}
else {

return;
}

}
}

As you can see, when addTransport is called, it takes not only a Swift_Transport object, but also a
string alias for that transport. So, how can you allow each tagged transport service to also supply an alias?

To answer this, change the service declaration:

services:
acme_mailer.transport.smtp:

class: \Swift_SmtpTransport
arguments:

- %mailer_host%

PDF brought to you by
generated on February 20, 2013

Chapter 19: Working with Tagged Services | 77

http://sensiolabs.com

Listing 19-8

tags:
- { name: acme_mailer.transport, alias: foo }

acme_mailer.transport.sendmail:
class: \Swift_SendmailTransport
tags:

- { name: acme_mailer.transport, alias: bar }

Notice that you've added a generic alias key to the tag. To actually use this, update the compiler:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\DependencyInjection\Compiler\CompilerPassInterface;
use Symfony\Component\DependencyInjection\Reference;

class TransportCompilerPass implements CompilerPassInterface
{

public function process(ContainerBuilder $container)
{

if (!$container->hasDefinition('acme_mailer.transport_chain')) {
return;

}

$definition = $container->getDefinition(
'acme_mailer.transport_chain'

);

$taggedServices = $container->findTaggedServiceIds(
'acme_mailer.transport'

);
foreach ($taggedServices as $id => $tagAttributes) {

foreach ($tagAttributes as $attributes) {
$definition->addMethodCall(

'addTransport',
array(new Reference($id), $attributes["alias"])

);
}

}
}

}

The trickiest part is the $attributes variable. Because you can use the same tag many times on the same
service (e.g. you could theoretically tag the same service 5 times with the acme_mailer.transport tag),
$attributes is an array of the tag information for each tag on that service.

PDF brought to you by
generated on February 20, 2013

Chapter 19: Working with Tagged Services | 78

http://sensiolabs.com

Listing 20-1

Listing 20-2

Chapter 20

Using a Factory to Create Services

Symfony2's Service Container provides a powerful way of controlling the creation of objects, allowing
you to specify arguments passed to the constructor as well as calling methods and setting parameters.
Sometimes, however, this will not provide you with everything you need to construct your objects. For
this situation, you can use a factory to create the object and tell the service container to call a method on
the factory rather than directly instantiating the object.

Suppose you have a factory that configures and returns a new NewsletterManager object:

1
2
3
4
5
6
7
8
9

10
11

class NewsletterFactory
{

public function get()
{

$newsletterManager = new NewsletterManager();

// ...

return $newsletterManager;
}

}

To make the NewsletterManager object available as a service, you can configure the service container to
use the NewsletterFactory factory class:

1
2
3
4
5
6
7
8
9

parameters:
...
newsletter_manager.class: NewsletterManager
newsletter_factory.class: NewsletterFactory

services:
newsletter_manager:

class: "%newsletter_manager.class%"
factory_class: "%newsletter_factory.class%"
factory_method: get

When you specify the class to use for the factory (via factory_class) the method will be called statically.
If the factory itself should be instantiated and the resulting object's method called (as in this example),
configure the factory itself as a service:

PDF brought to you by
generated on February 20, 2013

Chapter 20: Using a Factory to Create Services | 79

http://sensiolabs.com

Listing 20-3

Listing 20-4

1
2
3
4
5
6
7
8
9

10
11

parameters:
...
newsletter_manager.class: NewsletterManager
newsletter_factory.class: NewsletterFactory

services:
newsletter_factory:

class: "%newsletter_factory.class%"
newsletter_manager:

class: "%newsletter_manager.class%"
factory_service: newsletter_factory
factory_method: get

The factory service is specified by its id name and not a reference to the service itself. So, you do
not need to use the @ syntax.

Passing Arguments to the Factory Method
If you need to pass arguments to the factory method, you can use the arguments options inside the
service container. For example, suppose the get method in the previous example takes the templating
service as an argument:

parameters:
...
newsletter_manager.class: NewsletterManager
newsletter_factory.class: NewsletterFactory

services:
newsletter_factory:

class: "%newsletter_factory.class%"
newsletter_manager:

class: "%newsletter_manager.class%"
factory_service: newsletter_factory
factory_method: get
arguments:

- @templating

PDF brought to you by
generated on February 20, 2013

Chapter 20: Using a Factory to Create Services | 80

http://sensiolabs.com

Listing 21-1

Chapter 21

Configuring Services with a Service
Configurator

The Service Configurator is a feature of the Dependency Injection Container that allows you to use a
callable to configure a service after its instantiation.

You can specify a method in another service, a PHP function or a static method in a class. The service
instance is passed to the callable, allowing the configurator to do whatever it needs to configure the
service after its creation.

A Service Configurator can be used, for example, when you a have a service that requires complex setup
based on configuration settings coming from different sources/services. Using an external configurator,
you can maintain the service implementation cleanly and keep it decoupled from the other objects that
provide the configuration needed.

Another interesting use case is when you have multiple objects that share a common configuration or
that should be configured in a similar way at runtime.

For example, suppose you have an application where you send different types of emails to users. Emails
are passed through different formatters that could be enabled or not depending on some dynamic
application settings. You start defining a NewsletterManager class like this:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

class NewsletterManager implements EmailFormatterAwareInterface
{

protected $mailer;
protected $enabledFormatters;

public function setMailer(Mailer $mailer)
{

$this->mailer = $mailer;
}

public function setEnabledFormatters(array $enabledFormatters)
{

$this->enabledFormatters = $enabledFormatters;
}

PDF brought to you by
generated on February 20, 2013

Chapter 21: Configuring Services with a Service Configurator | 81

http://sensiolabs.com

Listing 21-2

Listing 21-3

Listing 21-4

16
17

// ...
}

and also a GreetingCardManager class:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

class GreetingCardManager implements EmailFormatterAwareInterface
{

protected $mailer;
protected $enabledFormatters;

public function setMailer(Mailer $mailer)
{

$this->mailer = $mailer;
}

public function setEnabledFormatters(array $enabledFormatters)
{

$this->enabledFormatters = $enabledFormatters;
}

// ...
}

As mentioned before, the goal is to set the formatters at runtime depending on application settings. To
do this, you also have an EmailFormatterManager class which is responsible for loading and validating
formatters enabled in the application:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

class EmailFormatterManager
{

protected $enabledFormatters;

public function loadFormatters()
{

// code to configure which formatters to use
$enabledFormatters = array();
// ...

$this->enabledFormatters = $enabledFormatters;
}

public function getEnabledFormatters()
{

return $this->enabledFormatters;
}

// ...
}

If your goal is to avoid having to couple NewsletterManager and GreetingCardManager with
EmailFormatterManager, then you might want to create a configurator class to configure these instances:

1
2
3
4
5

class EmailConfigurator
{

private $formatterManager;

public function __construct(EmailFormatterManager $formatterManager)

PDF brought to you by
generated on February 20, 2013

Chapter 21: Configuring Services with a Service Configurator | 82

http://sensiolabs.com

Listing 21-5

6
7
8
9

10
11
12
13
14
15
16
17
18

{
$this->formatterManager = $formatterManager;

}

public function configure(EmailFormatterAwareInterface $emailManager)
{

$emailManager->setEnabledFormatters(
$this->formatterManager->getEnabledFormatters()

);
}

// ...
}

The EmailConfigurator's job is to inject the enabled filters into NewsletterManager and
GreetingCardManager because they are not aware of where the enabled filters come from. In the other
hand, the EmailFormatterManager holds the knowledge about the enabled formatters and how to load
them, keeping the single responsibility principle.

Configurator Service Config
The service config for the above classes would look something like this:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

services:
my_mailer:

...

email_formatter_manager:
class: EmailFormatterManager
...

email_configurator:
class: EmailConfigurator
arguments: ["@email_formatter_manager"]
...

newsletter_manager:
class: NewsletterManager
calls:

- [setMailer, ["@my_mailer"]]
configurator: ["@email_configurator", configure]

greeting_card_manager:
class: GreetingCardManager
calls:

- [setMailer, ["@my_mailer"]]
configurator: ["@email_configurator", configure]

PDF brought to you by
generated on February 20, 2013

Chapter 21: Configuring Services with a Service Configurator | 83

http://sensiolabs.com

Listing 22-1

Listing 22-2

Chapter 22

Managing Common Dependencies with Parent
Services

As you add more functionality to your application, you may well start to have related classes that share
some of the same dependencies. For example you may have a Newsletter Manager which uses setter
injection to set its dependencies:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

class NewsletterManager
{

protected $mailer;
protected $emailFormatter;

public function setMailer(Mailer $mailer)
{

$this->mailer = $mailer;
}

public function setEmailFormatter(EmailFormatter $emailFormatter)
{

$this->emailFormatter = $emailFormatter;
}

// ...
}

and also a Greeting Card class which shares the same dependencies:

1
2
3
4
5
6
7
8

class GreetingCardManager
{

protected $mailer;
protected $emailFormatter;

public function setMailer(Mailer $mailer)
{

$this->mailer = $mailer;

PDF brought to you by
generated on February 20, 2013

Chapter 22: Managing Common Dependencies with Parent Services | 84

http://sensiolabs.com

Listing 22-3

Listing 22-4

9
10
11
12
13
14
15
16
17

}

public function setEmailFormatter(EmailFormatter $emailFormatter)
{

$this->emailFormatter = $emailFormatter;
}

// ...
}

The service config for these classes would look something like this:

parameters:
...
newsletter_manager.class: NewsletterManager
greeting_card_manager.class: GreetingCardManager

services:
my_mailer:

...
my_email_formatter:

...
newsletter_manager:

class: "%newsletter_manager.class%"
calls:

- [setMailer, [@my_mailer]]
- [setEmailFormatter, [@my_email_formatter]]

greeting_card_manager:
class: "%greeting_card_manager.class%"
calls:

- [setMailer, [@my_mailer]]
- [setEmailFormatter, [@my_email_formatter]]

There is a lot of repetition in both the classes and the configuration. This means that if you changed, for
example, the Mailer of EmailFormatter classes to be injected via the constructor, you would need to
update the config in two places. Likewise if you needed to make changes to the setter methods you would
need to do this in both classes. The typical way to deal with the common methods of these related classes
would be to extract them to a super class:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

abstract class MailManager
{

protected $mailer;
protected $emailFormatter;

public function setMailer(Mailer $mailer)
{

$this->mailer = $mailer;
}

public function setEmailFormatter(EmailFormatter $emailFormatter)
{

$this->emailFormatter = $emailFormatter;
}

// ...
}

The NewsletterManager and GreetingCardManager can then extend this super class:

PDF brought to you by
generated on February 20, 2013

Chapter 22: Managing Common Dependencies with Parent Services | 85

http://sensiolabs.com

Listing 22-5

Listing 22-6

Listing 22-7

1
2
3
4

class NewsletterManager extends MailManager
{

// ...
}

and:

1
2
3
4

class GreetingCardManager extends MailManager
{

// ...
}

In a similar fashion, the Symfony2 service container also supports extending services in the configuration
so you can also reduce the repetition by specifying a parent for a service.

parameters:
...
newsletter_manager.class: NewsletterManager
greeting_card_manager.class: GreetingCardManager
mail_manager.class: MailManager

services:
my_mailer:

...
my_email_formatter:

...
mail_manager:

class: "%mail_manager.class%"
abstract: true
calls:

- [setMailer, [@my_mailer]]
- [setEmailFormatter, [@my_email_formatter]]

newsletter_manager:
class: "%newsletter_manager.class%"
parent: mail_manager

greeting_card_manager:
class: "%greeting_card_manager.class%"
parent: mail_manager

In this context, having a parent service implies that the arguments and method calls of the parent service
should be used for the child services. Specifically, the setter methods defined for the parent service will
be called when the child services are instantiated.

If you remove the parent config key, the services will still be instantiated and they will still of
course extend the MailManager class. The difference is that omitting the parent config key will
mean that the calls defined on the mail_manager service will not be executed when the child
services are instantiated.

The parent class is abstract as it should not be directly instantiated. Setting it to abstract in the config file
as has been done above will mean that it can only be used as a parent service and cannot be used directly
as a service to inject and will be removed at compile time. In other words, it exists merely as a "template"
that other services can use.

PDF brought to you by
generated on February 20, 2013

Chapter 22: Managing Common Dependencies with Parent Services | 86

http://sensiolabs.com

Listing 22-8

Listing 22-9

In order for parent dependencies to resolve, the ContainerBuilder must first be compiled. See
Compiling the Container for more details.

Overriding Parent Dependencies
There may be times where you want to override what class is passed in for a dependency of one child
service only. Fortunately, by adding the method call config for the child service, the dependencies set
by the parent class will be overridden. So if you needed to pass a different dependency just to the
NewsletterManager class, the config would look like this:

parameters:
...
newsletter_manager.class: NewsletterManager
greeting_card_manager.class: GreetingCardManager
mail_manager.class: MailManager

services:
my_mailer:

...
my_alternative_mailer:

...
my_email_formatter:

...
mail_manager:

class: "%mail_manager.class%"
abstract: true
calls:

- [setMailer, [@my_mailer]]
- [setEmailFormatter, [@my_email_formatter]]

newsletter_manager:
class: "%newsletter_manager.class%"
parent: mail_manager
calls:

- [setMailer, [@my_alternative_mailer]]

greeting_card_manager:
class: "%greeting_card_manager.class%"
parent: mail_manager

The GreetingCardManager will receive the same dependencies as before, but the NewsletterManager
will be passed the my_alternative_mailer instead of the my_mailer service.

Collections of Dependencies
It should be noted that the overridden setter method in the previous example is actually called twice -
once per the parent definition and once per the child definition. In the previous example, that was fine,
since the second setMailer call replaces mailer object set by the first call.

In some cases, however, this can be a problem. For example, if the overridden method call involves
adding something to a collection, then two objects will be added to that collection. The following shows
such a case, if the parent class looks like this:

PDF brought to you by
generated on February 20, 2013

Chapter 22: Managing Common Dependencies with Parent Services | 87

http://sensiolabs.com

Listing 22-10

1
2
3
4
5
6
7
8
9

10
11

abstract class MailManager
{

protected $filters;

public function setFilter($filter)
{

$this->filters[] = $filter;
}

// ...
}

If you had the following config:

parameters:
...
newsletter_manager.class: NewsletterManager
mail_manager.class: MailManager

services:
my_filter:

...
another_filter:

...
mail_manager:

class: "%mail_manager.class%"
abstract: true
calls:

- [setFilter, [@my_filter]]

newsletter_manager:
class: "%newsletter_manager.class%"
parent: mail_manager
calls:

- [setFilter, [@another_filter]]

In this example, the setFilter of the newsletter_manager service will be called twice, resulting in the
$filters array containing both my_filter and another_filter objects. This is great if you just want to
add additional filters to the subclasses. If you want to replace the filters passed to the subclass, removing
the parent setting from the config will prevent the base class from calling setFilter.

PDF brought to you by
generated on February 20, 2013

Chapter 22: Managing Common Dependencies with Parent Services | 88

http://sensiolabs.com

Listing 23-1

Listing 23-2

Listing 23-3

Chapter 23

Advanced Container Configuration

Marking Services as public / private
When defining services, you'll usually want to be able to access these definitions within your application
code. These services are called public. For example, the doctrine service registered with the container
when using the DoctrineBundle is a public service as you can access it via:

1 $doctrine = $container->get('doctrine');

However, there are use-cases when you don't want a service to be public. This is common when a service
is only defined because it could be used as an argument for another service.

If you use a private service as an argument to only one other service, this will result in an inlined
instantiation (e.g. new PrivateFooBar()) inside this other service, making it publicly unavailable
at runtime.

Simply said: A service will be private when you do not want to access it directly from your code.

Here is an example:

1
2
3
4

services:
foo:

class: Example\Foo
public: false

Now that the service is private, you cannot call:

1 $container->get('foo');

However, if a service has been marked as private, you can still alias it (see below) to access this service
(via the alias).

PDF brought to you by
generated on February 20, 2013

Chapter 23: Advanced Container Configuration | 89

http://sensiolabs.com

Listing 23-4

Listing 23-5

Listing 23-6

Services are by default public.

Aliasing
You may sometimes want to use shortcuts to access some services. You can do so by aliasing them and,
furthermore, you can even alias non-public services.

1
2
3
4
5

services:
foo:

class: Example\Foo
bar:

alias: foo

This means that when using the container directly, you can access the foo service by asking for the bar
service like this:

1 $container->get('bar'); // Would return the foo service

Requiring files
There might be use cases when you need to include another file just before the service itself gets loaded.
To do so, you can use the file directive.

1
2
3
4

services:
foo:

class: Example\Foo\Bar
file: "%kernel.root_dir%/src/path/to/file/foo.php"

Notice that Symfony will internally call the PHP function require_once which means that your file will
be included only once per request.

PDF brought to you by
generated on February 20, 2013

Chapter 23: Advanced Container Configuration | 90

http://sensiolabs.com

Chapter 24

Container Building Workflow

In the preceding pages of this section, there has been little to say about where the various files and classes
should be located. This is because this depends on the application, library or framework in which you
want to use the container. Looking at how the container is configured and built in the Symfony2 full stack
framework will help you see how this all fits together, whether you are using the full stack framework or
looking to use the service container in another application.

The full stack framework uses the HttpKernel component to manage the loading of the service container
configuration from the application and bundles and also handles the compilation and caching. Even if
you are not using HttpKernel, it should give you an idea of one way of organizing configuration in a
modular application.

Working with cached Container
Before building it, the kernel checks to see if a cached version of the container exists. The HttpKernel has
a debug setting and if this is false, the cached version is used if it exists. If debug is true then the kernel
checks to see if configuration is fresh and if it is, the cached version of the container is used. If not then the
container is built from the application-level configuration and the bundles's extension configuration.

Read Dumping the Configuration for Performance for more details.

Application-level Configuration
Application level config is loaded from the app/config directory. Multiple files are loaded which are
then merged when the extensions are processed. This allows for different configuration for different
environments e.g. dev, prod.

These files contain parameters and services that are loaded directly into the container as per Setting Up
the Container with Configuration Files. They also contain configuration that is processed by extensions as
per Managing Configuration with Extensions. These are considered to be bundle configuration since each
bundle contains an Extension class.

PDF brought to you by
generated on February 20, 2013

Chapter 24: Container Building Workflow | 91

http://sensiolabs.com

Bundle-level Configuration with Extensions
By convention, each bundle contains an Extension class which is in the bundle's DependencyInjection
directory. These are registered with the ContainerBuilder when the kernel is booted. When the
ContainerBuilder is compiled, the application-level configuration relevant to the bundle's extension
is passed to the Extension which also usually loads its own config file(s), typically from the bundle's
Resources/config directory. The application-level config is usually processed with a Configuration
object also stored in the bundle's DependencyInjection directory.

Compiler passes to allow Interaction between Bundles
Compiler passes are used to allow interaction between different bundles as they cannot affect each
other's configuration in the extension classes. One of the main uses is to process tagged services,
allowing bundles to register services to picked up by other bundles, such as Monolog loggers, Twig
extensions and Data Collectors for the Web Profiler. Compiler passes are usually placed in the bundle's
DependencyInjection/Compiler directory.

Compilation and Caching
After the compilation process has loaded the services from the configuration, extensions and the compiler
passes, it is dumped so that the cache can be used next time. The dumped version is then used during
subsequent requests as it is more efficient.

PDF brought to you by
generated on February 20, 2013

Chapter 24: Container Building Workflow | 92

http://sensiolabs.com

Chapter 25

The Event Dispatcher Component

Introduction
Objected Oriented code has gone a long way to ensuring code extensibility. By creating classes that have
well defined responsibilities, your code becomes more flexible and a developer can extend them with
subclasses to modify their behaviors. But if he wants to share his changes with other developers who have
also made their own subclasses, code inheritance is no longer the answer.

Consider the real-world example where you want to provide a plugin system for your project. A plugin
should be able to add methods, or do something before or after a method is executed, without interfering
with other plugins. This is not an easy problem to solve with single inheritance, and multiple inheritance
(were it possible with PHP) has its own drawbacks.

The Symfony2 Event Dispatcher component implements the Observer1 pattern in a simple and effective
way to make all these things possible and to make your projects truly extensible.

Take a simple example from the The HttpKernel Component. Once a Response object has been created, it
may be useful to allow other elements in the system to modify it (e.g. add some cache headers) before it's
actually used. To make this possible, the Symfony2 kernel throws an event - kernel.response. Here's
how it works:

• A listener (PHP object) tells a central dispatcher object that it wants to listen to the
kernel.response event;

• At some point, the Symfony2 kernel tells the dispatcher object to dispatch the
kernel.response event, passing with it an Event object that has access to the Response
object;

• The dispatcher notifies (i.e. calls a method on) all listeners of the kernel.response event,
allowing each of them to make modifications to the Response object.

Installation
You can install the component in many different ways:

1. http://en.wikipedia.org/wiki/Observer_pattern

PDF brought to you by
generated on February 20, 2013

Chapter 25: The Event Dispatcher Component | 93

http://sensiolabs.com

Listing 25-1

• Use the official Git repository (https://github.com/symfony/EventDispatcher2);
• Install it via Composer (symfony/event-dispatcher on Packagist3).

Usage

Events

When an event is dispatched, it's identified by a unique name (e.g. kernel.response), which any
number of listeners might be listening to. An Event4 instance is also created and passed to all of the
listeners. As you'll see later, the Event object itself often contains data about the event being dispatched.

Naming Conventions

The unique event name can be any string, but optionally follows a few simple naming conventions:

• use only lowercase letters, numbers, dots (.), and underscores (_);
• prefix names with a namespace followed by a dot (e.g. kernel.);
• end names with a verb that indicates what action is being taken (e.g. request).

Here are some examples of good event names:

• kernel.response
• form.pre_set_data

Event Names and Event Objects

When the dispatcher notifies listeners, it passes an actual Event object to those listeners. The base Event
class is very simple: it contains a method for stopping event propagation, but not much else.

Often times, data about a specific event needs to be passed along with the Event object so that the
listeners have needed information. In the case of the kernel.response event, the Event object that's
created and passed to each listener is actually of type FilterResponseEvent5, a subclass of the base
Event object. This class contains methods such as getResponse and setResponse, allowing listeners to
get or even replace the Response object.

The moral of the story is this: When creating a listener to an event, the Event object that's passed to
the listener may be a special subclass that has additional methods for retrieving information from and
responding to the event.

The Dispatcher

The dispatcher is the central object of the event dispatcher system. In general, a single dispatcher is
created, which maintains a registry of listeners. When an event is dispatched via the dispatcher, it notifies
all listeners registered with that event:

1
2
3

use Symfony\Component\EventDispatcher\EventDispatcher;

$dispatcher = new EventDispatcher();

2. https://github.com/symfony/EventDispatcher

3. https://packagist.org/packages/symfony/event-dispatcher

4. http://api.symfony.com/master/Symfony/Component/EventDispatcher/Event.html

5. http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/FilterResponseEvent.html

PDF brought to you by
generated on February 20, 2013

Chapter 25: The Event Dispatcher Component | 94

http://sensiolabs.com

Listing 25-2

Listing 25-3

Listing 25-4

Connecting Listeners

To take advantage of an existing event, you need to connect a listener to the dispatcher so that it can
be notified when the event is dispatched. A call to the dispatcher addListener() method associates any
valid PHP callable to an event:

1
2

$listener = new AcmeListener();
$dispatcher->addListener('foo.action', array($listener, 'onFooAction'));

The addListener() method takes up to three arguments:

• The event name (string) that this listener wants to listen to;
• A PHP callable that will be notified when an event is thrown that it listens to;
• An optional priority integer (higher equals more important) that determines when a listener is

triggered versus other listeners (defaults to 0). If two listeners have the same priority, they are
executed in the order that they were added to the dispatcher.

A PHP callable6 is a PHP variable that can be used by the call_user_func() function and returns
true when passed to the is_callable() function. It can be a \Closure instance, an object
implementing an __invoke method (which is what closures are in fact), a string representing a
function, or an array representing an object method or a class method.

So far, you've seen how PHP objects can be registered as listeners. You can also register PHP
Closures7 as event listeners:

1
2
3
4
5

use Symfony\Component\EventDispatcher\Event;

$dispatcher->addListener('foo.action', function (Event $event) {
// will be executed when the foo.action event is dispatched

});

Once a listener is registered with the dispatcher, it waits until the event is notified. In the above example,
when the foo.action event is dispatched, the dispatcher calls the AcmeListener::onFooAction method
and passes the Event object as the single argument:

1
2
3
4
5
6
7
8
9

10
11

use Symfony\Component\EventDispatcher\Event;

class AcmeListener
{

// ...

public function onFooAction(Event $event)
{

// ... do something
}

}

In many cases, a special Event subclass that's specific to the given event is passed to the listener.
This gives the listener access to special information about the event. Check the documentation or
implementation of each event to determine the exact Symfony\Component\EventDispatcher\Event
instance that's being passed. For example, the kernel.event event passes an instance of
Symfony\Component\HttpKernel\Event\FilterResponseEvent:

6. http://www.php.net/manual/en/language.pseudo-types.php#language.types.callback

7. http://php.net/manual/en/functions.anonymous.php

PDF brought to you by
generated on February 20, 2013

Chapter 25: The Event Dispatcher Component | 95

http://sensiolabs.com

Listing 25-5

Listing 25-6

Listing 25-7

1
2
3
4
5
6
7
8
9

use Symfony\Component\HttpKernel\Event\FilterResponseEvent;

public function onKernelResponse(FilterResponseEvent $event)
{

$response = $event->getResponse();
$request = $event->getRequest();

// ...
}

Creating and Dispatching an Event

In addition to registering listeners with existing events, you can create and dispatch your own events.
This is useful when creating third-party libraries and also when you want to keep different components
of your own system flexible and decoupled.

The Static Events Class

Suppose you want to create a new Event - store.order - that is dispatched each time an order is created
inside your application. To keep things organized, start by creating a StoreEvents class inside your
application that serves to define and document your event:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

namespace Acme\StoreBundle;

final class StoreEvents
{

/**
* The store.order event is thrown each time an order is created
* in the system.
*
* The event listener receives an
* Acme\StoreBundle\Event\FilterOrderEvent instance.
*
* @var string
*/
const STORE_ORDER = 'store.order';

}

Notice that this class doesn't actually do anything. The purpose of the StoreEvents class is just to
be a location where information about common events can be centralized. Notice also that a special
FilterOrderEvent class will be passed to each listener of this event.

Creating an Event object

Later, when you dispatch this new event, you'll create an Event instance and pass it to the dispatcher. The
dispatcher then passes this same instance to each of the listeners of the event. If you don't need to pass
any information to your listeners, you can use the default Symfony\Component\EventDispatcher\Event
class. Most of the time, however, you will need to pass information about the event to each listener. To
accomplish this, you'll create a new class that extends Symfony\Component\EventDispatcher\Event.

In this example, each listener will need access to some pretend Order object. Create an Event class that
makes this possible:

1
2

namespace Acme\StoreBundle\Event;

PDF brought to you by
generated on February 20, 2013

Chapter 25: The Event Dispatcher Component | 96

http://sensiolabs.com

Listing 25-8

Listing 25-9

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

use Symfony\Component\EventDispatcher\Event;
use Acme\StoreBundle\Order;

class FilterOrderEvent extends Event
{

protected $order;

public function __construct(Order $order)
{

$this->order = $order;
}

public function getOrder()
{

return $this->order;
}

}

Each listener now has access to the Order object via the getOrder method.

Dispatch the Event

The dispatch()8 method notifies all listeners of the given event. It takes two arguments: the name of the
event to dispatch and the Event instance to pass to each listener of that event:

1
2
3
4
5
6
7
8
9

10
11

use Acme\StoreBundle\StoreEvents;
use Acme\StoreBundle\Order;
use Acme\StoreBundle\Event\FilterOrderEvent;

// the order is somehow created or retrieved
$order = new Order();
// ...

// create the FilterOrderEvent and dispatch it
$event = new FilterOrderEvent($order);
$dispatcher->dispatch(StoreEvents::STORE_ORDER, $event);

Notice that the special FilterOrderEvent object is created and passed to the dispatch method. Now,
any listener to the store.order event will receive the FilterOrderEvent and have access to the Order
object via the getOrder method:

1
2
3
4
5
6
7
8

// some listener class that's been registered for "STORE_ORDER" event
use Acme\StoreBundle\Event\FilterOrderEvent;

public function onStoreOrder(FilterOrderEvent $event)
{

$order = $event->getOrder();
// do something to or with the order

}

Using Event Subscribers

The most common way to listen to an event is to register an event listener with the dispatcher. This
listener can listen to one or more events and is notified each time those events are dispatched.

8. http://api.symfony.com/master/Symfony/Component/EventDispatcher/EventDispatcher.html#dispatch()

PDF brought to you by
generated on February 20, 2013

Chapter 25: The Event Dispatcher Component | 97

http://sensiolabs.com

Listing 25-10

Listing 25-11

Another way to listen to events is via an event subscriber. An event subscriber is a PHP class that's
able to tell the dispatcher exactly which events it should subscribe to. It implements the
EventSubscriberInterface9 interface, which requires a single static method called
getSubscribedEvents. Take the following example of a subscriber that subscribes to the
kernel.response and store.order events:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

namespace Acme\StoreBundle\Event;

use Symfony\Component\EventDispatcher\EventSubscriberInterface;
use Symfony\Component\HttpKernel\Event\FilterResponseEvent;

class StoreSubscriber implements EventSubscriberInterface
{

public static function getSubscribedEvents()
{

return array(
'kernel.response' => array(

array('onKernelResponsePre', 10),
array('onKernelResponseMid', 5),
array('onKernelResponsePost', 0),

),
'store.order' => array('onStoreOrder', 0),

);
}

public function onKernelResponsePre(FilterResponseEvent $event)
{

// ...
}

public function onKernelResponseMid(FilterResponseEvent $event)
{

// ...
}

public function onKernelResponsePost(FilterResponseEvent $event)
{

// ...
}

public function onStoreOrder(FilterOrderEvent $event)
{

// ...
}

}

This is very similar to a listener class, except that the class itself can tell the dispatcher which events it
should listen to. To register a subscriber with the dispatcher, use the addSubscriber()10 method:

1
2
3
4

use Acme\StoreBundle\Event\StoreSubscriber;

$subscriber = new StoreSubscriber();
$dispatcher->addSubscriber($subscriber);

The dispatcher will automatically register the subscriber for each event returned by the
getSubscribedEvents method. This method returns an array indexed by event names and whose values

9. http://api.symfony.com/master/Symfony/Component/EventDispatcher/EventSubscriberInterface.html

10. http://api.symfony.com/master/Symfony/Component/EventDispatcher/EventDispatcher.html#addSubscriber()

PDF brought to you by
generated on February 20, 2013

Chapter 25: The Event Dispatcher Component | 98

http://sensiolabs.com

Listing 25-12

Listing 25-13

Listing 25-14

are either the method name to call or an array composed of the method name to call and a priority. The
example above shows how to register several listener methods for the same event in subscriber and also
shows how to pass the priority of each listener method.

Stopping Event Flow/Propagation

In some cases, it may make sense for a listener to prevent any other listeners from being called. In other
words, the listener needs to be able to tell the dispatcher to stop all propagation of the event to future
listeners (i.e. to not notify any more listeners). This can be accomplished from inside a listener via the
stopPropagation()11 method:

1
2
3
4
5
6
7
8

use Acme\StoreBundle\Event\FilterOrderEvent;

public function onStoreOrder(FilterOrderEvent $event)
{

// ...

$event->stopPropagation();
}

Now, any listeners to store.order that have not yet been called will not be called.

It is possible to detect if an event was stopped by using the isPropagationStopped()12 method which
returns a boolean value:

1
2
3
4

$dispatcher->dispatch('foo.event', $event);
if ($event->isPropagationStopped()) {

// ...
}

EventDispatcher aware Events and Listeners

New in version 2.1: The Event object contains a reference to the invoking dispatcher since Symfony
2.1

The EventDispatcher always injects a reference to itself in the passed event object. This means that all
listeners have direct access to the EventDispatcher object that notified the listener via the passed Event
object's getDispatcher()13 method.

This can lead to some advanced applications of the EventDispatcher including letting listeners dispatch
other events, event chaining or even lazy loading of more listeners into the dispatcher object. Examples
follow:

Lazy loading listeners:

1
2
3
4
5

use Symfony\Component\EventDispatcher\Event;
use Acme\StoreBundle\Event\StoreSubscriber;

class Foo
{

11. http://api.symfony.com/master/Symfony/Component/EventDispatcher/Event.html#stopPropagation()

12. http://api.symfony.com/master/Symfony/Component/EventDispatcher/Event.html#isPropagationStopped()

13. http://api.symfony.com/master/Symfony/Component/EventDispatcher/Event.html#getDispatcher()

PDF brought to you by
generated on February 20, 2013

Chapter 25: The Event Dispatcher Component | 99

http://sensiolabs.com

Listing 25-15

Listing 25-16

Listing 25-17

6
7
8
9

10
11
12
13
14
15
16
17
18
19

private $started = false;

public function myLazyListener(Event $event)
{

if (false === $this->started) {
$subscriber = new StoreSubscriber();
$event->getDispatcher()->addSubscriber($subscriber);

}

$this->started = true;

// ... more code
}

}

Dispatching another event from within a listener:

1
2
3
4
5
6
7
8
9

10
11

use Symfony\Component\EventDispatcher\Event;

class Foo
{

public function myFooListener(Event $event)
{

$event->getDispatcher()->dispatch('log', $event);

// ... more code
}

}

While this above is sufficient for most uses, if your application uses multiple EventDispatcher instances,
you might need to specifically inject a known instance of the EventDispatcher into your listeners. This
could be done using constructor or setter injection as follows:

Constructor injection:

1
2
3
4
5
6
7
8
9

10
11

use Symfony\Component\EventDispatcher\EventDispatcherInterface;

class Foo
{

protected $dispatcher = null;

public function __construct(EventDispatcherInterface $dispatcher)
{

$this->dispatcher = $dispatcher;
}

}

Or setter injection:

1
2
3
4
5
6
7
8

use Symfony\Component\EventDispatcher\EventDispatcherInterface;

class Foo
{

protected $dispatcher = null;

public function setEventDispatcher(EventDispatcherInterface $dispatcher)
{

PDF brought to you by
generated on February 20, 2013

Chapter 25: The Event Dispatcher Component | 100

http://sensiolabs.com

Listing 25-18

Listing 25-19

Listing 25-20

Listing 25-21

9
10
11

$this->dispatcher = $dispatcher;
}

}

Choosing between the two is really a matter of taste. Many tend to prefer the constructor injection as
the objects are fully initialized at construction time. But when you have a long list of dependencies, using
setter injection can be the way to go, especially for optional dependencies.

Dispatcher Shortcuts

New in version 2.1: EventDispatcher::dispatch() method returns the event since Symfony 2.1.

The EventDispatcher::dispatch14 method always returns an Event15 object. This allows for various
shortcuts. For example if one does not need a custom event object, one can simply rely on a plain Event16

object. You do not even need to pass this to the dispatcher as it will create one by default unless you
specifically pass one:

1 $dispatcher->dispatch('foo.event');

Moreover, the EventDispatcher always returns whichever event object that was dispatched, i.e. either the
event that was passed or the event that was created internally by the dispatcher. This allows for nice
shortcuts:

1
2
3

if (!$dispatcher->dispatch('foo.event')->isPropagationStopped()) {
// ...

}

Or:

1
2

$barEvent = new BarEvent();
$bar = $dispatcher->dispatch('bar.event', $barEvent)->getBar();

Or:

1 $response = $dispatcher->dispatch('bar.event', new BarEvent())->getBar();

and so on...

Event Name Introspection

New in version 2.1: Added event name to the Event object since Symfony 2.1

14. http://api.symfony.com/master/Symfony/Component/EventDispatcher/EventDispatcher.html#dispatch()

15. http://api.symfony.com/master/Symfony/Component/EventDispatcher/Event.html

16. http://api.symfony.com/master/Symfony/Component/EventDispatcher/Event.html

PDF brought to you by
generated on February 20, 2013

Chapter 25: The Event Dispatcher Component | 101

http://sensiolabs.com

Listing 25-22

Since the EventDispatcher already knows the name of the event when dispatching it, the event name is
also injected into the Event17 objects, making it available to event listeners via the getName()18 method.

The event name, (as with any other data in a custom event object) can be used as part of the listener's
processing logic:

1
2
3
4
5
6
7
8
9

use Symfony\Component\EventDispatcher\Event;

class Foo
{

public function myEventListener(Event $event)
{

echo $event->getName();
}

}

17. http://api.symfony.com/master/Symfony/Component/EventDispatcher/Event.html

18. http://api.symfony.com/master/Symfony/Component/EventDispatcher/Event.html#getName()

PDF brought to you by
generated on February 20, 2013

Chapter 25: The Event Dispatcher Component | 102

http://sensiolabs.com

Chapter 26

The Generic Event Object

New in version 2.1: The GenericEvent event class was added in Symfony 2.1

The base Event1 class provided by the Event Dispatcher component is deliberately sparse to allow the
creation of API specific event objects by inheritance using OOP. This allow for elegant and readable code
in complex applications.

The GenericEvent2 is available for convenience for those who wish to use just one event object
throughout their application. It is suitable for most purposes straight out of the box, because it follows
the standard observer pattern where the event object encapsulates an event 'subject', but has the addition
of optional extra arguments.

GenericEvent3 has a simple API in addition to the base class Event4

• __construct()5: Constructor takes the event subject and any arguments;
• getSubject()6: Get the subject;
• setArgument()7: Sets an argument by key;
• setArguments()8: Sets arguments array;
• getArgument()9: Gets an argument by key;
• getArguments()10: Getter for all arguments;
• hasArgument()11: Returns true if the argument key exists;

1. http://api.symfony.com/master/Symfony/Component/EventDispatcher/Event.html

2. http://api.symfony.com/master/Symfony/Component/EventDispatcher/GenericEvent.html

3. http://api.symfony.com/master/Symfony/Component/EventDispatcher/GenericEvent.html

4. http://api.symfony.com/master/Symfony/Component/EventDispatcher/Event.html

5. http://api.symfony.com/master/Symfony/Component/EventDispatcher/GenericEvent.html#__construct()

6. http://api.symfony.com/master/Symfony/Component/EventDispatcher/GenericEvent.html#getSubject()

7. http://api.symfony.com/master/Symfony/Component/EventDispatcher/GenericEvent.html#setArgument()

8. http://api.symfony.com/master/Symfony/Component/EventDispatcher/GenericEvent.html#setArguments()

9. http://api.symfony.com/master/Symfony/Component/EventDispatcher/GenericEvent.html#getArgument()

10. http://api.symfony.com/master/Symfony/Component/EventDispatcher/GenericEvent.html#getArguments()

11. http://api.symfony.com/master/Symfony/Component/EventDispatcher/GenericEvent.html#hasArgument()

PDF brought to you by
generated on February 20, 2013

Chapter 26: The Generic Event Object | 103

http://sensiolabs.com

Listing 26-1

Listing 26-2

Listing 26-3

The GenericEvent also implements ArrayAccess12 on the event arguments which makes it very
convenient to pass extra arguments regarding the event subject.

The following examples show use-cases to give a general idea of the flexibility. The examples assume
event listeners have been added to the dispatcher.

Simply passing a subject:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

use Symfony\Component\EventDispatcher\GenericEvent;

$event = GenericEvent($subject);
$dispatcher->dispatch('foo', $event);

class FooListener
{

public function handler(GenericEvent $event)
{

if ($event->getSubject() instanceof Foo) {
// ...

}
}

}

Passing and processing arguments using the ArrayAccess13 API to access the event arguments:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

use Symfony\Component\EventDispatcher\GenericEvent;

$event = new GenericEvent(
$subject,
array('type' => 'foo', 'counter' => 0)

);
$dispatcher->dispatch('foo', $event);

echo $event['counter'];

class FooListener
{

public function handler(GenericEvent $event)
{

if (isset($event['type']) && $event['type'] === 'foo') {
// ... do something

}

$event['counter']++;
}

}

Filtering data:

1
2
3
4
5
6
7

use Symfony\Component\EventDispatcher\GenericEvent;

$event = new GenericEvent($subject, array('data' => 'foo'));
$dispatcher->dispatch('foo', $event);

echo $event['data'];

12. http://php.net/manual/en/class.arrayaccess.php

13. http://php.net/manual/en/class.arrayaccess.php

PDF brought to you by
generated on February 20, 2013

Chapter 26: The Generic Event Object | 104

http://sensiolabs.com

8
9

10
11
12
13
14

class FooListener
{

public function filter(GenericEvent $event)
{

strtolower($event['data']);
}

}

PDF brought to you by
generated on February 20, 2013

Chapter 26: The Generic Event Object | 105

http://sensiolabs.com

Listing 27-1

Chapter 27

The Container Aware Event Dispatcher

New in version 2.1: This feature was moved into the EventDispatcher component in Symfony 2.1.

Introduction
The ContainerAwareEventDispatcher1 is a special event dispatcher implementation which is coupled to
the service container that is part of the Dependency Injection component. It allows services to be specified
as event listeners making the event dispatcher extremely powerful.

Services are lazy loaded meaning the services attached as listeners will only be created if an event is
dispatched that requires those listeners.

Setup
Setup is straightforward by injecting a ContainerInterface2 into the
ContainerAwareEventDispatcher3:

1
2
3
4
5

use Symfony\Component\DependencyInjection\ContainerBuilder;
use Symfony\Component\EventDispatcher\ContainerAwareEventDispatcher;

$container = new ContainerBuilder();
$dispatcher = new ContainerAwareEventDispatcher($container);

1. http://api.symfony.com/master/Symfony/Component/EventDispatcher/ContainerAwareEventDispatcher.html

2. http://api.symfony.com/master/Symfony/Component/DependencyInjection/ContainerInterface.html

3. http://api.symfony.com/master/Symfony/Component/EventDispatcher/ContainerAwareEventDispatcher.html

PDF brought to you by
generated on February 20, 2013

Chapter 27: The Container Aware Event Dispatcher | 106

http://sensiolabs.com

Listing 27-2

Listing 27-3

Listing 27-4

Adding Listeners
The Container Aware Event Dispatcher can either load specified services directly, or services that
implement EventSubscriberInterface4.

The following examples assume the service container has been loaded with any services that are
mentioned.

Services must be marked as public in the container.

Adding Services

To connect existing service definitions, use the addListenerService()5 method where the $callback is
an array of array($serviceId, $methodName):

1 $dispatcher->addListenerService($eventName, array('foo', 'logListener'));

Adding Subscriber Services

EventSubscribers can be added using the addSubscriberService()6 method where the first argument
is the service ID of the subscriber service, and the second argument is the the service's class name (which
must implement EventSubscriberInterface7) as follows:

1
2
3
4

$dispatcher->addSubscriberService(
'kernel.store_subscriber',
'StoreSubscriber'

);

The EventSubscriberInterface will be exactly as you would expect:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

use Symfony\Component\EventDispatcher\EventSubscriberInterface;
// ...

class StoreSubscriber implements EventSubscriberInterface
{

public static function getSubscribedEvents()
{

return array(
'kernel.response' => array(

array('onKernelResponsePre', 10),
array('onKernelResponsePost', 0),

),
'store.order' => array('onStoreOrder', 0),

);
}

public function onKernelResponsePre(FilterResponseEvent $event)

4. http://api.symfony.com/master/Symfony/Component/EventDispatcher/EventSubscriberInterface.html

5. http://api.symfony.com/master/Symfony/Component/EventDispatcher/ContainerAwareEventDispatcher.html#addListenerService()

6. http://api.symfony.com/master/Symfony/Component/EventDispatcher/ContainerAwareEventDispatcher.html#addSubscriberService()

7. http://api.symfony.com/master/Symfony/Component/EventDispatcher/EventSubscriberInterface.html

PDF brought to you by
generated on February 20, 2013

Chapter 27: The Container Aware Event Dispatcher | 107

http://sensiolabs.com

18
19
20
21
22
23
24
25
26
27
28
29
30
31

{
// ...

}

public function onKernelResponsePost(FilterResponseEvent $event)
{

// ...
}

public function onStoreOrder(FilterOrderEvent $event)
{

// ...
}

}

PDF brought to you by
generated on February 20, 2013

Chapter 27: The Container Aware Event Dispatcher | 108

http://sensiolabs.com

Listing 28-1

Chapter 28

The Filesystem Component

The Filesystem components provides basic utilities for the filesystem.

New in version 2.1: The Filesystem Component is new to Symfony 2.1. Previously, the Filesystem
class was located in the HttpKernel component.

Installation
You can install the component in many different ways:

• Use the official Git repository (https://github.com/symfony/Filesystem1);
• Install it via Composer (symfony/filesystem on Packagist2).

Usage
The Filesystem3 class is the unique endpoint for filesystem operations:

1
2
3
4
5
6
7
8

use Symfony\Component\Filesystem\Filesystem;
use Symfony\Component\Filesystem\Exception\IOException;

$fs = new Filesystem();

try {
$fs->mkdir('/tmp/random/dir/' . mt_rand());

} catch (IOException $e) {

1. https://github.com/symfony/Filesystem

2. https://packagist.org/packages/symfony/filesystem

3. http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html

PDF brought to you by
generated on February 20, 2013

Chapter 28: The Filesystem Component | 109

http://sensiolabs.com

Listing 28-2

Listing 28-3

Listing 28-4

9
10

echo "An error occurred while creating your directory";
}

Methods mkdir()4, exists()5, touch()6, remove()7, chmod()8, chown()9 and chgrp()10 can
receive a string, an array or any object implementing Traversable11 as the target argument.

Mkdir

Mkdir creates directory. On posix filesystems, directories are created with a default mode value 0777.
You can use the second argument to set your own mode:

1 $fs->mkdir('/tmp/photos', 0700);

You can pass an array or any Traversable12 object as the first argument.

Exists

Exists checks for the presence of all files or directories and returns false if a file is missing:

1
2
3
4
5

// this directory exists, return true
$fs->exists('/tmp/photos');

// rabbit.jpg exists, bottle.png does not exists, return false
$fs->exists(array('rabbit.jpg', 'bottle.png'));

You can pass an array or any Traversable13 object as the first argument.

Copy

This method is used to copy files. If the target already exists, the file is copied only if the source
modification date is earlier than the target. This behavior can be overridden by the third boolean
argument:

4. http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#mkdir()

5. http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#exists()

6. http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#touch()

7. http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#remove()

8. http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#chmod()

9. http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#chown()

10. http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#chgrp()

11. http://php.net/manual/en/class.traversable.php

12. http://php.net/manual/en/class.traversable.php

13. http://php.net/manual/en/class.traversable.php

PDF brought to you by
generated on February 20, 2013

Chapter 28: The Filesystem Component | 110

http://sensiolabs.com

Listing 28-5

Listing 28-6

Listing 28-7

1
2
3
4
5

// works only if image-ICC has been modified after image.jpg
$fs->copy('image-ICC.jpg', 'image.jpg');

// image.jpg will be overridden
$fs->copy('image-ICC.jpg', 'image.jpg', true);

Touch

Touch sets access and modification time for a file. The current time is used by default. You can set your
own with the second argument. The third argument is the access time:

1
2
3
4
5
6

// set modification time to the current timestamp
$fs->touch('file.txt');
// set modification time 10 seconds in the future
$fs->touch('file.txt', time() + 10);
// set access time 10 seconds in the past
$fs->touch('file.txt', time(), time() - 10);

You can pass an array or any Traversable14 object as the first argument.

Chown

Chown is used to change the owner of a file. The third argument is a boolean recursive option:

1
2
3
4

// set the owner of the lolcat video to www-data
$fs->chown('lolcat.mp4', 'www-data');
// change the owner of the video directory recursively
$fs->chown('/video', 'www-data', true);

You can pass an array or any Traversable15 object as the first argument.

Chgrp

Chgrp is used to change the group of a file. The third argument is a boolean recursive option:

1
2
3
4

// set the group of the lolcat video to nginx
$fs->chgrp('lolcat.mp4', 'nginx');
// change the group of the video directory recursively
$fs->chgrp('/video', 'nginx', true);

14. http://php.net/manual/en/class.traversable.php

15. http://php.net/manual/en/class.traversable.php

PDF brought to you by
generated on February 20, 2013

Chapter 28: The Filesystem Component | 111

http://sensiolabs.com

Listing 28-8

Listing 28-9

Listing 28-10

Listing 28-11

You can pass an array or any Traversable16 object as the first argument.

Chmod

Chmod is used to change the mode of a file. The third argument is a boolean recursive option:

1
2
3
4

// set the mode of the video to 0600
$fs->chmod('video.ogg', 0600);
// change the mod of the src directory recursively
$fs->chmod('src', 0700, 0000, true);

You can pass an array or any Traversable17 object as the first argument.

Remove

Remove let's you remove files, symlink, directories easily:

1 $fs->remove(array('symlink', '/path/to/directory', 'activity.log'));

You can pass an array or any Traversable18 object as the first argument.

Rename

Rename is used to rename files and directories:

1
2
3
4

//rename a file
$fs->rename('/tmp/processed_video.ogg', '/path/to/store/video_647.ogg');
//rename a directory
$fs->rename('/tmp/files', '/path/to/store/files');

symlink

Creates a symbolic link from the target to the destination. If the filesystem does not support symbolic
links, a third boolean argument is available:

1
2
3

// create a symbolic link
$fs->symlink('/path/to/source', '/path/to/destination');
// duplicate the source directory if the filesystem

16. http://php.net/manual/en/class.traversable.php

17. http://php.net/manual/en/class.traversable.php

18. http://php.net/manual/en/class.traversable.php

PDF brought to you by
generated on February 20, 2013

Chapter 28: The Filesystem Component | 112

http://sensiolabs.com

Listing 28-12

Listing 28-13

Listing 28-14

4
5

// does not support symbolic links
$fs->symlink('/path/to/source', '/path/to/destination', true);

makePathRelative

Return the relative path of a directory given another one:

1
2
3
4
5
6
7

// returns '../'
$fs->makePathRelative(

'/var/lib/symfony/src/Symfony/',
'/var/lib/symfony/src/Symfony/Component'

);
// returns 'videos'
$fs->makePathRelative('/tmp', '/tmp/videos');

mirror

Mirrors a directory:

1 $fs->mirror('/path/to/source', '/path/to/target');

isAbsolutePath

isAbsolutePath returns true if the given path is absolute, false otherwise:

1
2
3
4
5
6
7
8

// return true
$fs->isAbsolutePath('/tmp');
// return true
$fs->isAbsolutePath('c:\\Windows');
// return false
$fs->isAbsolutePath('tmp');
// return false
$fs->isAbsolutePath('../dir');

Error Handling
Whenever something wrong happens, an exception implementing ExceptionInterface19 is thrown.

Prior to version 2.1, mkdir()20 returned a boolean and did not throw exceptions. As of 2.1, a
IOException21 is thrown if a directory creation fails.

19. http://api.symfony.com/master/Symfony/Component/Filesystem/Exception/ExceptionInterface.html

20. http://api.symfony.com/master/Symfony/Component/Filesystem/Filesystem.html#mkdir()

21. http://api.symfony.com/master/Symfony/Component/Filesystem/Exception/IOException.html

PDF brought to you by
generated on February 20, 2013

Chapter 28: The Filesystem Component | 113

http://sensiolabs.com

Listing 29-1

Chapter 29

The Finder Component

The Finder Component finds files and directories via an intuitive fluent interface.

Installation
You can install the component in many different ways:

• Use the official Git repository (https://github.com/symfony/Finder1);
• Install it via Composer (symfony/finder on Packagist2).

Usage
The Finder3 class finds files and/or directories:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

use Symfony\Component\Finder\Finder;

$finder = new Finder();
$finder->files()->in(__DIR__);

foreach ($finder as $file) {
// Print the absolute path
print $file->getRealpath()."\n";

// Print the relative path to the file, omitting the filename
print $file->getRelativePath()."\n";

// Print the relative path to the file
print $file->getRelativePathname()."\n";

}

1. https://github.com/symfony/Finder

2. https://packagist.org/packages/symfony/finder

3. http://api.symfony.com/master/Symfony/Component/Finder/Finder.html

PDF brought to you by
generated on February 20, 2013

Chapter 29: The Finder Component | 114

http://sensiolabs.com

Listing 29-2

Listing 29-3

Listing 29-4

The $file is an instance of SplFileInfo4 which extends SplFileInfo5 to provide methods to work with
relative paths.

The above code prints the names of all the files in the current directory recursively. The Finder class uses
a fluent interface, so all methods return the Finder instance.

A Finder instance is a PHP Iterator6. So, instead of iterating over the Finder with foreach, you
can also convert it to an array with the iterator_to_array7 method, or get the number of items
with iterator_count8.

When searching through multiple locations passed to the in()9 method, a separate iterator is
created internally for every location. This means we have multiple result sets aggregated into one.
Since iterator_to_array10 uses keys of result sets by default, when converting to an array, some
keys might be duplicated and their values overwritten. This can be avoided by passing false as a
second parameter to iterator_to_array11.

Criteria
There are lots of ways to filter and sort your results.

Location

The location is the only mandatory criteria. It tells the finder which directory to use for the search:

1 $finder->in(__DIR__);

Search in several locations by chaining calls to in()12:

1 $finder->files()->in(__DIR__)->in('/elsewhere');

New in version 2.2: Wildcard support was added in version 2.2.

Use wildcard characters to search in the directories matching a pattern:

1 $finder->in('src/Symfony/*/*/Resources');

Each pattern has to resolve to at least one directory path.

Exclude directories from matching with the exclude()13 method:

4. http://api.symfony.com/master/Symfony/Component/Finder/SplFileInfo.html

5. http://php.net/manual/en/class.splfileinfo.php

6. http://php.net/manual/en/class.iterator.php

7. http://php.net/manual/en/function.iterator-to-array.php

8. http://php.net/manual/en/function.iterator-count.php

9. http://api.symfony.com/master/Symfony/Component/Finder/Finder.html#in()

10. http://php.net/manual/en/function.iterator-to-array.php

11. http://php.net/manual/en/function.iterator-to-array.php

12. http://api.symfony.com/master/Symfony/Component/Finder/Finder.html#in()

13. http://api.symfony.com/master/Symfony/Component/Finder/Finder.html#exclude()

PDF brought to you by
generated on February 20, 2013

Chapter 29: The Finder Component | 115

http://sensiolabs.com

Listing 29-5

Listing 29-6

Listing 29-7

Listing 29-8

Listing 29-9

Listing 29-10

Listing 29-11

1 $finder->in(__DIR__)->exclude('ruby');

As the Finder uses PHP iterators, you can pass any URL with a supported protocol14:

1 $finder->in('ftp://example.com/pub/');

And it also works with user-defined streams:

1
2
3
4
5
6
7
8
9

10
11
12

use Symfony\Component\Finder\Finder;

$s3 = new \Zend_Service_Amazon_S3($key, $secret);
$s3->registerStreamWrapper("s3");

$finder = new Finder();
$finder->name('photos*')->size('< 100K')->date('since 1 hour ago');
foreach ($finder->in('s3://bucket-name') as $file) {

// ... do something

print $file->getFilename()."\n";
}

Read the Streams15 documentation to learn how to create your own streams.

Files or Directories

By default, the Finder returns files and directories; but the files()16 and directories()17 methods
control that:

1
2
3

$finder->files();

$finder->directories();

If you want to follow links, use the followLinks() method:

1 $finder->files()->followLinks();

By default, the iterator ignores popular VCS files. This can be changed with the ignoreVCS() method:

1 $finder->ignoreVCS(false);

Sorting

Sort the result by name or by type (directories first, then files):

14. http://www.php.net/manual/en/wrappers.php

15. http://www.php.net/streams

16. http://api.symfony.com/master/Symfony/Component/Finder/Finder.html#files()

17. http://api.symfony.com/master/Symfony/Component/Finder/Finder.html#directories()

PDF brought to you by
generated on February 20, 2013

Chapter 29: The Finder Component | 116

http://sensiolabs.com

Listing 29-12

Listing 29-13

Listing 29-14

Listing 29-15

Listing 29-16

Listing 29-17

1
2
3

$finder->sortByName();

$finder->sortByType();

Notice that the sort* methods need to get all matching elements to do their jobs. For large
iterators, it is slow.

You can also define your own sorting algorithm with sort() method:

1
2
3
4
5
6

$sort = function (\SplFileInfo $a, \SplFileInfo $b)
{

return strcmp($a->getRealpath(), $b->getRealpath());
};

$finder->sort($sort);

File Name

Restrict files by name with the name()18 method:

1 $finder->files()->name('*.php');

The name() method accepts globs, strings, or regexes:

1 $finder->files()->name('/\.php$/');

The notName() method excludes files matching a pattern:

1 $finder->files()->notName('*.rb');

File Contents

New in version 2.1: The contains() and notContains() methods were added in version 2.1

Restrict files by contents with the contains()19 method:

1 $finder->files()->contains('lorem ipsum');

The contains() method accepts strings or regexes:

1 $finder->files()->contains('/lorem\s+ipsum$/i');

The notContains() method excludes files containing given pattern:

18. http://api.symfony.com/master/Symfony/Component/Finder/Finder.html#name()

19. http://api.symfony.com/master/Symfony/Component/Finder/Finder.html#contains()

PDF brought to you by
generated on February 20, 2013

Chapter 29: The Finder Component | 117

http://sensiolabs.com

Listing 29-18

Listing 29-19

Listing 29-20

Listing 29-21

Listing 29-22

Listing 29-23

Listing 29-24

1 $finder->files()->notContains('dolor sit amet');

Path

New in version 2.2: The path() and notPath() methods were added in version 2.2.

Restrict files and directories by path with the path()20 method:

1 $finder->path('some/special/dir');

On all platforms slash (i.e. /) should be used as the directory separator.

The path() method accepts a string or a regular expression:

1
2

$finder->path('foo/bar');
$finder->path('/^foo\/bar/');

Internally, strings are converted into regular expressions by escaping slashes and adding delimiters:

1
2

dirname ===> /dirname/
a/b/c ===> /a\/b\/c/

The notPath()21 method excludes files by path:

1 $finder->notPath('other/dir');

File Size

Restrict files by size with the size()22 method:

1 $finder->files()->size('< 1.5K');

Restrict by a size range by chaining calls:

1 $finder->files()->size('>= 1K')->size('<= 2K');

The comparison operator can be any of the following: >, >=, <, <=, ==, !=.

New in version 2.1: The operator != was added in version 2.1.

The target value may use magnitudes of kilobytes (k, ki), megabytes (m, mi), or gigabytes (g, gi). Those
suffixed with an i use the appropriate 2**n version in accordance with the IEC standard23.

20. http://api.symfony.com/master/Symfony/Component/Finder/Finder.html#path()

21. http://api.symfony.com/master/Symfony/Component/Finder/Finder.html#notPath()

22. http://api.symfony.com/master/Symfony/Component/Finder/Finder.html#size()

PDF brought to you by
generated on February 20, 2013

Chapter 29: The Finder Component | 118

http://sensiolabs.com

Listing 29-25

Listing 29-26

Listing 29-27

Listing 29-28

File Date

Restrict files by last modified dates with the date()24 method:

1 $finder->date('since yesterday');

The comparison operator can be any of the following: >, >=, <, '<=', '=='. You can also use since or after
as an alias for >, and until or before as an alias for <.

The target value can be any date supported by the strtotime25 function.

Directory Depth

By default, the Finder recursively traverse directories. Restrict the depth of traversing with depth()26:

1
2

$finder->depth('== 0');
$finder->depth('< 3');

Custom Filtering

To restrict the matching file with your own strategy, use filter()27:

1
2
3
4
5
6
7
8

$filter = function (\SplFileInfo $file)
{

if (strlen($file) > 10) {
return false;

}
};

$finder->files()->filter($filter);

The filter() method takes a Closure as an argument. For each matching file, it is called with the file as
a SplFileInfo28 instance. The file is excluded from the result set if the Closure returns false.

Reading contents of returned files

New in version 2.1: Method getContents() have been introduced in version 2.1.

The contents of returned files can be read with getContents()29:

1
2
3
4

use Symfony\Component\Finder\Finder;

$finder = new Finder();
$finder->files()->in(__DIR__);

23. http://physics.nist.gov/cuu/Units/binary.html

24. http://api.symfony.com/master/Symfony/Component/Finder/Finder.html#date()

25. http://www.php.net/manual/en/datetime.formats.php

26. http://api.symfony.com/master/Symfony/Component/Finder/Finder.html#depth()

27. http://api.symfony.com/master/Symfony/Component/Finder/Finder.html#filter()

28. http://api.symfony.com/master/Symfony/Component/Finder/SplFileInfo.html

29. http://api.symfony.com/master/Symfony/Component/Finder/SplFileInfo.html#getContents()

PDF brought to you by
generated on February 20, 2013

Chapter 29: The Finder Component | 119

http://sensiolabs.com

5
6
7
8
9

foreach ($finder as $file) {
$contents = $file->getContents();
...

}

PDF brought to you by
generated on February 20, 2013

Chapter 29: The Finder Component | 120

http://sensiolabs.com

Listing 30-1

Listing 30-2

Chapter 30

The HttpFoundation Component

The HttpFoundation Component defines an object-oriented layer for the HTTP specification.

In PHP, the request is represented by some global variables ($_GET, $_POST, $_FILE, $_COOKIE,
$_SESSION, ...) and the response is generated by some functions (echo, header, setcookie, ...).

The Symfony2 HttpFoundation component replaces these default PHP global variables and functions by
an Object-Oriented layer.

Installation
You can install the component in many different ways:

• Use the official Git repository (https://github.com/symfony/HttpFoundation1);
• Install it via Composer (symfony/http-foundation on Packagist2).

Request
The most common way to create request is to base it on the current PHP global variables with
createFromGlobals()3:

1
2
3

use Symfony\Component\HttpFoundation\Request;

$request = Request::createFromGlobals();

which is almost equivalent to the more verbose, but also more flexible, __construct()4 call:

1. https://github.com/symfony/HttpFoundation

2. https://packagist.org/packages/symfony/http-foundation

3. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#createFromGlobals()

4. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#__construct()

PDF brought to you by
generated on February 20, 2013

Chapter 30: The HttpFoundation Component | 121

http://sensiolabs.com

1
2
3
4
5
6
7
8

$request = new Request(
$_GET,
$_POST,
array(),
$_COOKIE,
$_FILES,
$_SERVER

);

Accessing Request Data

A Request object holds information about the client request. This information can be accessed via several
public properties:

• request: equivalent of $_POST;
• query: equivalent of $_GET ($request->query->get('name'));
• cookies: equivalent of $_COOKIE;
• attributes: no equivalent - used by your app to store other data (see below)
• files: equivalent of $_FILE;
• server: equivalent of $_SERVER;
• headers: mostly equivalent to a sub-set of $_SERVER ($request->headers->get('Content-

Type')).

Each property is a ParameterBag5 instance (or a sub-class of), which is a data holder class:

• request: ParameterBag6;
• query: ParameterBag7;
• cookies: ParameterBag8;
• attributes: ParameterBag9;
• files: FileBag10;
• server: ServerBag11;
• headers: HeaderBag12.

All ParameterBag13 instances have methods to retrieve and update its data:

• all()14: Returns the parameters;
• keys()15: Returns the parameter keys;
• replace()16: Replaces the current parameters by a new set;
• add()17: Adds parameters;
• get()18: Returns a parameter by name;
• set()19: Sets a parameter by name;

5. http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html

6. http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html

7. http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html

8. http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html

9. http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html

10. http://api.symfony.com/master/Symfony/Component/HttpFoundation/FileBag.html

11. http://api.symfony.com/master/Symfony/Component/HttpFoundation/ServerBag.html

12. http://api.symfony.com/master/Symfony/Component/HttpFoundation/HeaderBag.html

13. http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html

14. http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html#all()

15. http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html#keys()

16. http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html#replace()

17. http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html#add()

18. http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html#get()

19. http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html#set()

PDF brought to you by
generated on February 20, 2013

Chapter 30: The HttpFoundation Component | 122

http://sensiolabs.com

Listing 30-3

Listing 30-4

• has()20: Returns true if the parameter is defined;
• remove()21: Removes a parameter.

The ParameterBag22 instance also has some methods to filter the input values:

• getAlpha()23: Returns the alphabetic characters of the parameter value;
• getAlnum()24: Returns the alphabetic characters and digits of the parameter value;
• getDigits()25: Returns the digits of the parameter value;
• getInt()26: Returns the parameter value converted to integer;
• filter()27: Filters the parameter by using the PHP filter_var() function.

All getters takes up to three arguments: the first one is the parameter name and the second one is the
default value to return if the parameter does not exist:

1
2
3
4
5
6
7
8
9

10

// the query string is '?foo=bar'

$request->query->get('foo');
// returns bar

$request->query->get('bar');
// returns null

$request->query->get('bar', 'bar');
// returns 'bar'

When PHP imports the request query, it handles request parameters like foo[bar]=bar in a special way
as it creates an array. So you can get the foo parameter and you will get back an array with a bar element.
But sometimes, you might want to get the value for the "original" parameter name: foo[bar]. This is
possible with all the ParameterBag getters like get()28 via the third argument:

1
2
3
4
5
6
7
8
9

10

// the query string is '?foo[bar]=bar'

$request->query->get('foo');
// returns array('bar' => 'bar')

$request->query->get('foo[bar]');
// returns null

$request->query->get('foo[bar]', null, true);
// returns 'bar'

Finally, you can also store additional data in the request, thanks to the public attributes property,
which is also an instance of ParameterBag29. This is mostly used to attach information that belongs to the
Request and that needs to be accessed from many different points in your application. For information
on how this is used in the Symfony2 framework, see read more.

20. http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html#has()

21. http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html#remove()

22. http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html

23. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#getAlpha()

24. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#getAlnum()

25. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#getDigits()

26. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#getInt()

27. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#filter()

28. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#get()

29. http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html

PDF brought to you by
generated on February 20, 2013

Chapter 30: The HttpFoundation Component | 123

http://sensiolabs.com

Listing 30-5

Listing 30-6

Listing 30-7

Identifying a Request

In your application, you need a way to identify a request; most of the time, this is done via the "path info"
of the request, which can be accessed via the getPathInfo()30 method:

1
2
3

// for a request to http://example.com/blog/index.php/post/hello-world
// the path info is "/post/hello-world"
$request->getPathInfo();

Simulating a Request

Instead of creating a Request based on the PHP globals, you can also simulate a Request:

1
2
3
4
5

$request = Request::create(
'/hello-world',
'GET',
array('name' => 'Fabien')

);

The create()31 method creates a request based on a path info, a method and some parameters (the query
parameters or the request ones depending on the HTTP method); and of course, you an also override all
other variables as well (by default, Symfony creates sensible defaults for all the PHP global variables).

Based on such a request, you can override the PHP global variables via overrideGlobals()32:

1 $request->overrideGlobals();

You can also duplicate an existing query via duplicate()33 or change a bunch of parameters with
a single call to initialize()34.

Accessing the Session

If you have a session attached to the Request, you can access it via the getSession()35 method; the
hasPreviousSession()36 method tells you if the request contains a Session which was started in one of
the previous requests.

Accessing Accept-* Headers Data

You can easily access basic data extracted from Accept-* headers by using the following methods:

• getAcceptableContentTypes()37: returns the list of accepted content types ordered by
descending quality;

• getLanguages()38: returns the list of accepted languages ordered by descending quality;
• getCharsets()39: returns the list of accepted charsets ordered by descending quality;

30. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#getPathInfo()

31. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#create()

32. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#overrideGlobals()

33. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#duplicate()

34. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#initialize()

35. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#getSession()

36. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#hasPreviousSession()

37. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#getAcceptableContentTypes()

38. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#getLanguages()

PDF brought to you by
generated on February 20, 2013

Chapter 30: The HttpFoundation Component | 124

http://sensiolabs.com

Listing 30-8

Listing 30-9

Listing 30-10

New in version 2.2: The AcceptHeader40 class is new in Symfony 2.2.

If you need to get full access to parsed data from Accept, Accept-Language, Accept-Charset or Accept-
Encoding, you can use AcceptHeader41 utility class:

1
2
3
4
5
6
7
8
9

10
11

use Symfony\Component\HttpFoundation\AcceptHeader;

$accept = AcceptHeader::fromString($request->headers->get('Accept'));
if ($accept->has('text/html')) {

$item = $accept->get('html');
$charset = $item->getAttribute('charset', 'utf-8');
$quality = $item->getQuality();

}

// accepts items are sorted by descending quality
$accepts = AcceptHeader::fromString($request->headers->get('Accept'))->all();

Accessing other Data

The Request class has many other methods that you can use to access the request information. Have a
look at the API for more information about them.

Response
A Response42 object holds all the information that needs to be sent back to the client from a given request.
The constructor takes up to three arguments: the response content, the status code, and an array of
HTTP headers:

1
2
3
4
5
6
7

use Symfony\Component\HttpFoundation\Response;

$response = new Response(
'Content',
200,
array('content-type' => 'text/html')

);

These information can also be manipulated after the Response object creation:

1
2
3
4
5
6

$response->setContent('Hello World');

// the headers public attribute is a ResponseHeaderBag
$response->headers->set('Content-Type', 'text/plain');

$response->setStatusCode(404);

When setting the Content-Type of the Response, you can set the charset, but it is better to set it via the
setCharset()43 method:

39. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#getCharsets()

40. http://api.symfony.com/master/Symfony/Component/HttpFoundation/AcceptHeader.html

41. http://api.symfony.com/master/Symfony/Component/HttpFoundation/AcceptHeader.html

42. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html

PDF brought to you by
generated on February 20, 2013

Chapter 30: The HttpFoundation Component | 125

http://sensiolabs.com

Listing 30-11

Listing 30-12

Listing 30-13

Listing 30-14

1 $response->setCharset('ISO-8859-1');

Note that by default, Symfony assumes that your Responses are encoded in UTF-8.

Sending the Response

Before sending the Response, you can ensure that it is compliant with the HTTP specification by calling
the prepare()44 method:

1 $response->prepare($request);

Sending the response to the client is then as simple as calling send()45:

1 $response->send();

Setting Cookies

The response cookies can be manipulated though the headers public attribute:

1
2
3

use Symfony\Component\HttpFoundation\Cookie;

$response->headers->setCookie(new Cookie('foo', 'bar'));

The setCookie()46 method takes an instance of Cookie47 as an argument.

You can clear a cookie via the clearCookie()48 method.

Managing the HTTP Cache

The Response49 class has a rich set of methods to manipulate the HTTP headers related to the cache:

• setPublic()50;
• setPrivate()51;
• expire()52;
• setExpires()53;
• setMaxAge()54;
• setSharedMaxAge()55;
• setTtl()56;
• setClientTtl()57;

43. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#setCharset()

44. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#prepare()

45. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#send()

46. http://api.symfony.com/master/Symfony/Component/HttpFoundation/ResponseHeaderBag.html#setCookie()

47. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Cookie.html

48. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#clearCookie()

49. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html

50. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#setPublic()

51. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#setPrivate()

52. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#expire()

53. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#setExpires()

54. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#setMaxAge()

55. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#setSharedMaxAge()

56. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#setTtl()

57. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#setClientTtl()

PDF brought to you by
generated on February 20, 2013

Chapter 30: The HttpFoundation Component | 126

http://sensiolabs.com

Listing 30-15

Listing 30-16

Listing 30-17

Listing 30-18

• setLastModified()58;
• setEtag()59;
• setVary()60;

The setCache()61 method can be used to set the most commonly used cache information in one method
call:

1
2
3
4
5
6
7
8

$response->setCache(array(
'etag' => 'abcdef',
'last_modified' => new \DateTime(),
'max_age' => 600,
's_maxage' => 600,
'private' => false,
'public' => true,

));

To check if the Response validators (ETag, Last-Modified) match a conditional value specified in the
client Request, use the isNotModified()62 method:

1
2
3

if ($response->isNotModified($request)) {
$response->send();

}

If the Response is not modified, it sets the status code to 304 and remove the actual response content.

Redirecting the User

To redirect the client to another URL, you can use the RedirectResponse63 class:

1
2
3

use Symfony\Component\HttpFoundation\RedirectResponse;

$response = new RedirectResponse('http://example.com/');

Streaming a Response

New in version 2.1: Support for streamed responses was added in Symfony 2.1.

The StreamedResponse64 class allows you to stream the Response back to the client. The response
content is represented by a PHP callable instead of a string:

1
2
3
4

use Symfony\Component\HttpFoundation\StreamedResponse;

$response = new StreamedResponse();
$response->setCallback(function () {

58. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#setLastModified()

59. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#setEtag()

60. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#setVary()

61. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#setCache()

62. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#isNotModified()

63. http://api.symfony.com/master/Symfony/Component/HttpFoundation/RedirectResponse.html

64. http://api.symfony.com/master/Symfony/Component/HttpFoundation/StreamedResponse.html

PDF brought to you by
generated on February 20, 2013

Chapter 30: The HttpFoundation Component | 127

http://sensiolabs.com

Listing 30-19

Listing 30-20

Listing 30-21

5
6
7
8
9

10
11

echo 'Hello World';
flush();
sleep(2);
echo 'Hello World';
flush();

});
$response->send();

Downloading Files

New in version 2.1: The makeDisposition method was added in Symfony 2.1.

When uploading a file, you must add a Content-Disposition header to your response. While creating
this header for basic file downloads is easy, using non-ASCII filenames is more involving. The
makeDisposition()65 abstracts the hard work behind a simple API:

1
2
3
4
5

use Symfony\Component\HttpFoundation\ResponseHeaderBag;

$d = $response->headers->makeDisposition(ResponseHeaderBag::DISPOSITION_ATTACHMENT,
'foo.pdf');

$response->headers->set('Content-Disposition', $d);

Creating a JSON Response

Any type of response can be created via the Response66 class by setting the right content and headers. A
JSON response might look like this:

1
2
3
4
5
6
7

use Symfony\Component\HttpFoundation\Response;

$response = new Response();
$response->setContent(json_encode(array(

'data' => 123
)));
$response->headers->set('Content-Type', 'application/json');

New in version 2.1: The JsonResponse67 class was added in Symfony 2.1.

There is also a helpful JsonResponse68 class, which can make this even easier:

1
2

use Symfony\Component\HttpFoundation\JsonResponse;

65. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#makeDisposition()

66. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html

67. http://api.symfony.com/master/Symfony/Component/HttpFoundation/JsonResponse.html

68. http://api.symfony.com/master/Symfony/Component/HttpFoundation/JsonResponse.html

PDF brought to you by
generated on February 20, 2013

Chapter 30: The HttpFoundation Component | 128

http://sensiolabs.com

Listing 30-22

Listing 30-23

3
4
5
6

$response = new JsonResponse();
$response->setData(array(

'data' => 123
));

This encodes your array of data to JSON and sets the Content-Type header to application/json. If
you're using JSONP, you can set the callback function that the data should be passed to:

1 $response->setCallback('handleResponse');

In this case, the Content-Type header will be text/javascript and the response content will look like
this:

1 handleResponse({'data': 123});

Session
The session information is in its own document: Session Management.

PDF brought to you by
generated on February 20, 2013

Chapter 30: The HttpFoundation Component | 129

http://sensiolabs.com

Listing 31-1

Chapter 31

Session Management

The Symfony2 HttpFoundation Component has a very powerful and flexible session subsystem which
is designed to provide session management through a simple object-oriented interface using a variety of
session storage drivers.

New in version 2.1: The SessionInterface1 interface, as well as a number of other changes, are
new as of Symfony 2.1.

Sessions are used via the simple Session2 implementation of SessionInterface3 interface.

Quick example:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

use Symfony\Component\HttpFoundation\Session\Session;

$session = new Session();
$session->start();

// set and get session attributes
$session->set('name', 'Drak');
$session->get('name');

// set flash messages
$session->getFlashBag()->add('notice', 'Profile updated');

// retrieve messages
foreach ($session->getFlashBag()->get('notice', array()) as $message) {

echo "<div class='flash-notice'>$message</div>";
}

1. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/SessionInterface.html

2. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html

3. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/SessionInterface.html

PDF brought to you by
generated on February 20, 2013

Chapter 31: Session Management | 130

http://sensiolabs.com

Symfony sessions are designed to replace several native PHP functions. Applications should avoid
using session_start(), session_regenerate_id(), session_id(), session_name(), and
session_destroy() and instead use the APIs in the following section.

While it is recommended to explicitly start a session, a sessions will actually start on demand, that
is, if any session request is made to read/write session data.

Symfony sessions are incompatible with PHP ini directive session.auto_start = 1 This directive
should be turned off in php.ini, in the webserver directives or in .htaccess.

Session API
The Session4 class implements SessionInterface5.

The Session6 has a simple API as follows divided into a couple of groups.

Session workflow

• start()7: Starts the session - do not use session_start().
• migrate()8: Regenerates the session ID - do not use session_regenerate_id(). This method

can optionally change the lifetime of the new cookie that will be emitted by calling this
method.

• invalidate()9: Clears all session data and regenerates session ID. Do not use
session_destroy().

• getId()10: Gets the session ID. Do not use session_id().
• setId()11: Sets the session ID. Do not use session_id().
• getName()12: Gets the session name. Do not use session_name().
• setName()13: Sets the session name. Do not use session_name().

Session attributes

• set()14: Sets an attribute by key;
• get()15: Gets an attribute by key;
• all()16: Gets all attributes as an array of key => value;
• has()17: Returns true if the attribute exists;
• keys()18: Returns an array of stored attribute keys;

4. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html

5. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/SessionInterface.html

6. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html

7. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#start()

8. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#migrate()

9. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#invalidate()

10. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#getId()

11. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#setId()

12. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#getName()

13. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#setName()

14. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#set()

15. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#get()

16. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#all()

17. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#has()

18. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#keys()

PDF brought to you by
generated on February 20, 2013

Chapter 31: Session Management | 131

http://sensiolabs.com

• replace()19: Sets multiple attributes at once: takes a keyed array and sets each key => value
pair.

• remove()20: Deletes an attribute by key;
• clear()21: Clear all attributes;

The attributes are stored internally in an "Bag", a PHP object that acts like an array. A few methods exist
for "Bag" management:

• registerBag()22: Registers a SessionBagInterface23

• getBag()24: Gets a SessionBagInterface25 by bag name.
• getFlashBag()26: Gets the FlashBagInterface27. This is just a shortcut for convenience.

Session meta-data

• getMetadataBag()28: Gets the MetadataBag29 which contains information about the session.

Session Data Management
PHP's session management requires the use of the $_SESSION super-global, however, this interferes
somewhat with code testability and encapsulation in a OOP paradigm. To help overcome this, Symfony2
uses 'session bags' linked to the session to encapsulate a specific dataset of 'attributes' or 'flash messages'.

This approach also mitigates namespace pollution within the $_SESSION super-global because each bag
stores all its data under a unique namespace. This allows Symfony2 to peacefully co-exist with other
applications or libraries that might use the $_SESSION super-global and all data remains completely
compatible with Symfony2's session management.

Symfony2 provides 2 kinds of storage bags, with two separate implementations. Everything is written
against interfaces so you may extend or create your own bag types if necessary.

SessionBagInterface30 has the following API which is intended mainly for internal purposes:

• getStorageKey()31: Returns the key which the bag will ultimately store its array under in
$_SESSION. Generally this value can be left at its default and is for internal use.

• initialize()32: This is called internally by Symfony2 session storage classes to link bag data
to the session.

• getName()33: Returns the name of the session bag.

19. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#replace()

20. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#remove()

21. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#clear()

22. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#registerBag()

23. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/SessionBagInterface.html

24. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#getBag()

25. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/SessionBagInterface.html

26. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#getFlashBag()

27. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html

28. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#getMetadataBag()

29. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/MetadataBag.html

30. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/SessionBagInterface.html

31. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/SessionBagInterface.html#getStorageKey()

32. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/SessionBagInterface.html#initialize()

33. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/SessionBagInterface.html#getName()

PDF brought to you by
generated on February 20, 2013

Chapter 31: Session Management | 132

http://sensiolabs.com

Listing 31-2

Listing 31-3

Listing 31-4

Attributes
The purpose of the bags implementing the AttributeBagInterface34 is to handle session attribute
storage. This might include things like user ID, and remember me login settings or other user based state
information.

• AttributeBag35 This is the standard default implementation.
• NamespacedAttributeBag36 This implementation allows for attributes to be stored in a

structured namespace.

Any plain key => value storage system is limited in the extent to which complex data can be stored
since each key must be unique. You can achieve namespacing by introducing a naming convention to
the keys so different parts of your application could operate without clashing. For example, module1.foo
and module2.foo. However, sometimes this is not very practical when the attributes data is an array, for
example a set of tokens. In this case, managing the array becomes a burden because you have to retrieve
the array then process it and store it again:

1
2

$tokens = array('tokens' => array('a' => 'a6c1e0b6',
'b' => 'f4a7b1f3'));

So any processing of this might quickly get ugly, even simply adding a token to the array:

1
2
3

$tokens = $session->get('tokens');
$tokens['c'] = $value;
$session->set('tokens', $tokens);

With structured namespacing, the key can be translated to the array structure like this using a namespace
character (defaults to /):

1 $session->set('tokens/c', $value);

This way you can easily access a key within the stored array directly and easily.

AttributeBagInterface37 has a simple API

• set()38: Sets an attribute by key;
• get()39: Gets an attribute by key;
• all()40: Gets all attributes as an array of key => value;
• has()41: Returns true if the attribute exists;
• keys()42: Returns an array of stored attribute keys;
• replace()43: Sets multiple attributes at once: takes a keyed array and sets each key => value

pair.
• remove()44: Deletes an attribute by key;
• clear()45: Clear the bag;

34. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Attribute/AttributeBagInterface.html

35. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Attribute/AttributeBag.html

36. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Attribute/NamespacedAttributeBag.html

37. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Attribute/AttributeBagInterface.html

38. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Attribute/AttributeBagInterface.html#set()

39. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Attribute/AttributeBagInterface.html#get()

40. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Attribute/AttributeBagInterface.html#all()

41. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Attribute/AttributeBagInterface.html#has()

42. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Attribute/AttributeBagInterface.html#keys()

43. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Attribute/AttributeBagInterface.html#replace()

44. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Attribute/AttributeBagInterface.html#remove()

45. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Attribute/AttributeBagInterface.html#clear()

PDF brought to you by
generated on February 20, 2013

Chapter 31: Session Management | 133

http://sensiolabs.com

Listing 31-5

Flash messages
The purpose of the FlashBagInterface46 is to provide a way of setting and retrieving messages on a per
session basis. The usual workflow for flash messages would be set in an request, and displayed after a
page redirect. For example, a user submits a form which hits an update controller, and after processing
the controller redirects the page to either the updated page or an error page. Flash messages set in the
previous page request would be displayed immediately on the subsequent page load for that session. This
is however just one application for flash messages.

• AutoExpireFlashBagAutoExpireFlashBag47

This implementation messages set in one page-load will be available for display only on
the next page load. These messages will auto expire regardless of if they are retrieved or
not.

• FlashBagFlashBag48

In this implementation, messages will remain in the session until they are explicitly
retrieved or cleared. This makes it possible to use ESI caching.

FlashBagInterface49 has a simple API

• add()50: Adds a flash message to the stack of specified type;
• set()51: Sets flashes by type; This method conveniently takes both singles messages as a

string or multiple messages in an array.
• get()52: Gets flashes by type and clears those flashes from the bag;
• setAll()53: Sets all flashes, accepts a keyed array of arrays type => array(messages);
• all()54: Gets all flashes (as a keyed array of arrays) and clears the flashes from the bag;
• peek()55: Gets flashes by type (read only);
• peekAll()56: Gets all flashes (read only) as keyed array of arrays;
• has()57: Returns true if the type exists, false if not;
• keys()58: Returns an array of the stored flash types;
• clear()59: Clears the bag;

For simple applications it is usually sufficient to have one flash message per type, for example a
confirmation notice after a form is submitted. However, flash messages are stored in a keyed array by
flash $type which means your application can issue multiple messages for a given type. This allows the
API to be used for more complex messaging in your application.

Examples of setting multiple flashes:

1
2
3

use Symfony\Component\HttpFoundation\Session\Session;

$session = new Session();

46. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html

47. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/AutoExpireFlashBag.htmlhttp://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/AutoExpireFlashBag.html

48. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBag.htmlhttp://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBag.html

49. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html

50. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html#add()

51. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html#set()

52. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html#get()

53. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html#setAll()

54. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html#all()

55. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html#peek()

56. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html#peekAll()

57. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html#has()

58. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html#keys()

59. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html#clear()

PDF brought to you by
generated on February 20, 2013

Chapter 31: Session Management | 134

http://sensiolabs.com

Listing 31-6

Listing 31-7

4
5
6
7
8
9

10
11
12

$session->start();

// add flash messages
$session->getFlashBag()->add(

'warning',
'Your config file is writable, it should be set read-only'

);
$session->getFlashBag()->add('error', 'Failed to update name');
$session->getFlashBag()->add('error', 'Another error');

Displaying the flash messages might look like this:

Simple, display one type of message:

1
2
3
4
5
6
7
8
9

// display warnings
foreach ($session->getFlashBag()->get('warning', array()) as $message) {

echo "<div class='flash-warning'>$message</div>";
}

// display errors
foreach ($session->getFlashBag()->get('error', array()) as $message) {

echo "<div class='flash-error'>$message</div>";
}

Compact method to process display all flashes at once:

1
2
3
4
5

foreach ($session->getFlashBag()->all() as $type => $messages) {
foreach ($messages as $message) {

echo "<div class='flash-$type'>$message</div>\n";
}

}

PDF brought to you by
generated on February 20, 2013

Chapter 31: Session Management | 135

http://sensiolabs.com

Listing 32-1

Chapter 32

Configuring Sessions and Save Handlers

This section deals with how to configure session management and fine tune it to your specific needs.
This documentation covers save handlers, which store and retrieve session data, and configuring session
behaviour.

Save Handlers
The PHP session workflow has 6 possible operations that may occur. The normal session follows open,
read, write and close, with the possibility of destroy and gc (garbage collection which will expire any old
sessions: gc is called randomly according to PHP's configuration and if called, it is invoked after the open
operation). You can read more about this at php.net/session.customhandler1

Native PHP Save Handlers

So-called 'native' handlers, are save handlers which are either compiled into PHP or provided by PHP
extensions, such as PHP-Sqlite, PHP-Memcached and so on.

All native save handlers are internal to PHP and as such, have no public facing API. They must be
configured by PHP ini directives, usually session.save_path and potentially other driver specific
directives. Specific details can be found in docblock of the setOptions() method of each class.

While native save handlers can be activated by directly using ini_set('session.save_handler',
$name);, Symfony2 provides a convenient way to activate these in the same way as custom handlers.

Symfony2 provides drivers for the following native save handler as an example:

• NativeFileSessionHandler2

Example usage:

1
2

use Symfony\Component\HttpFoundation\Session\Session;
use Symfony\Component\HttpFoundation\Session\Storage\NativeSessionStorage;

1. http://php.net/session.customhandler

2. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/Handler/NativeFileSessionHandler.html

PDF brought to you by
generated on February 20, 2013

Chapter 32: Configuring Sessions and Save Handlers | 136

http://sensiolabs.com

Listing 32-2

3
4
5
6

use Symfony\Component\HttpFoundation\Session\Storage\Handler\NativeFileSessionHandler;

$storage = new NativeSessionStorage(array(), new NativeFileSessionHandler());
$session = new Session($storage);

With the exception of the files handler which is built into PHP and always available, the
availability of the other handlers depends on those PHP extensions being active at runtime.

Native save handlers provide a quick solution to session storage, however, in complex systems
where you need more control, custom save handlers may provide more freedom and flexibility.
Symfony2 provides several implementations which you may further customise as required.

Custom Save Handlers

Custom handlers are those which completely replace PHP's built in session save handlers by providing
six callback functions which PHP calls internally at various points in the session workflow.

Symfony2 HttpFoundation provides some by default and these can easily serve as examples if you wish
to write your own.

• PdoSessionHandler3

• MemcacheSessionHandler4

• MemcachedSessionHandler5

• MongoDbSessionHandler6

• NullSessionHandler7

Example usage:

1
2
3
4
5
6

use Symfony\Component\HttpFoundation\Session\Session;
use Symfony\Component\HttpFoundation\Session\Storage\SessionStorage;
use Symfony\Component\HttpFoundation\Session\Storage\Handler\PdoSessionHandler;

$storage = new NativeSessionStorage(array(), new PdoSessionHandler());
$session = new Session($storage);

Configuring PHP Sessions
The NativeSessionStorage8 can configure most of the PHP ini configuration directives which are
documented at php.net/session.configuration9.

To configure these settings, pass the keys (omitting the initial session. part of the key) as a key-value
array to the $options constructor argument. Or set them via the setOptions()10 method.

3. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/Handler/PdoSessionHandler.html

4. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/Handler/MemcacheSessionHandler.html

5. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/Handler/MemcachedSessionHandler.html

6. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/Handler/MongoDbSessionHandler.html

7. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/Handler/NullSessionHandler.html

8. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/NativeSessionStorage.html

9. http://php.net/session.configuration

10. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/NativeSessionStorage.html#setOptions()

PDF brought to you by
generated on February 20, 2013

Chapter 32: Configuring Sessions and Save Handlers | 137

http://sensiolabs.com

For the sake of clarity, some key options are explained in this documentation.

Session Cookie Lifetime
For security, session tokens are generally recommended to be sent as session cookies. You can configure
the lifetime of session cookies by specifying the lifetime (in seconds) using the cookie_lifetime key in
the constructor's $options argument in NativeSessionStorage11.

Setting a cookie_lifetime to 0 will cause the cookie to live only as long as the browser remains open.
Generally, cookie_lifetime would be set to a relatively large number of days, weeks or months. It is not
uncommon to set cookies for a year or more depending on the application.

Since session cookies are just a client-side token, they are less important in controlling the fine details of
your security settings which ultimately can only be securely controlled from the server side.

The cookie_lifetime setting is the number of seconds the cookie should live for, it is not
a Unix timestamp. The resulting session cookie will be stamped with an expiry time of
time()``+``cookie_lifetime where the time is taken from the server.

Configuring Garbage Collection
When a session opens, PHP will call the gc handler randomly according to the probability set by
session.gc_probability / session.gc_divisor. For example if these were set to 5/100 respectively, it
would mean a probability of 5%. Similarly, 3/4 would mean a 3 in 4 chance of being called, i.e. 75%.

If the garbage collection handler is invoked, PHP will pass the value stored in the PHP ini directive
session.gc_maxlifetime. The meaning in this context is that any stored session that was saved more
than maxlifetime ago should be deleted. This allows one to expire records based on idle time.

You can configure these settings by passing gc_probability, gc_divisor and gc_maxlifetime in an
array to the constructor of NativeSessionStorage12 or to the setOptions()13 method.

Session Lifetime
When a new session is created, meaning Symfony2 issues a new session cookie to the client, the cookie
will be stamped with an expiry time. This is calculated by adding the PHP runtime configuration value in
session.cookie_lifetime with the current server time.

PHP will only issue a cookie once. The client is expected to store that cookie for the entire lifetime.
A new cookie will only be issued when the session is destroyed, the browser cookie is deleted, or
the session ID is regenerated using the migrate() or invalidate() methods of the Session class.

The initial cookie lifetime can be set by configuring NativeSessionStorage using the
setOptions(array('cookie_lifetime' => 1234)) method.

11. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/NativeSessionStorage.html

12. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/NativeSessionStorage.html

13. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/NativeSessionStorage.html#setOptions()

PDF brought to you by
generated on February 20, 2013

Chapter 32: Configuring Sessions and Save Handlers | 138

http://sensiolabs.com

Listing 32-3

Listing 32-4

Listing 32-5

A cookie lifetime of 0 means the cookie expires when the browser is closed.

Session Idle Time/Keep Alive
There are often circumstances where you may want to protect, or minimize unauthorized use of a session
when a user steps away from their terminal while logged in by destroying the session after a certain period
of idle time. For example, it is common for banking applications to log the user out after just 5 to 10
minutes of inactivity. Setting the cookie lifetime here is not appropriate because that can be manipulated
by the client, so we must do the expiry on the server side. The easiest way is to implement this via garbage
collection which runs reasonably frequently. The cookie lifetime would be set to a relatively high value,
and the garbage collection maxlifetime would be set to destroy sessions at whatever the desired idle
period is.

The other option is to specifically checking if a session has expired after the session is started. The session
can be destroyed as required. This method of processing can allow the expiry of sessions to be integrated
into the user experience, for example, by displaying a message.

Symfony2 records some basic meta-data about each session to give you complete freedom in this area.

Session meta-data
Sessions are decorated with some basic meta-data to enable fine control over the security settings.
The session object has a getter for the meta-data, getMetadataBag()14 which exposes an instance of
MetadataBag15:

1
2

$session->getMetadataBag()->getCreated();
$session->getMetadataBag()->getLastUsed();

Both methods return a Unix timestamp (relative to the server).

This meta-data can be used to explicitly expire a session on access, e.g.:

1
2
3
4
5

$session->start();
if (time() - $session->getMetadataBag()->getLastUsed() > $maxIdleTime) {

$session->invalidate();
throw new SessionExpired(); // redirect to expired session page

}

It is also possible to tell what the cookie_lifetime was set to for a particular cookie by reading the
getLifetime() method:

1 $session->getMetadataBag()->getLifetime();

The expiry time of the cookie can be determined by adding the created timestamp and the lifetime.

14. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html#getMetadataBag()

15. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/MetadataBag.html

PDF brought to you by
generated on February 20, 2013

Chapter 32: Configuring Sessions and Save Handlers | 139

http://sensiolabs.com

PHP 5.4 compatibility
Since PHP 5.4.0, SessionHandler16 and SessionHandlerInterface17 are available. Symfony 2.1
provides forward compatibility for the SessionHandlerInterface18 so it can be used under PHP 5.3.
This greatly improves inter-operability with other libraries.

SessionHandler19 is a special PHP internal class which exposes native save handlers to PHP user-space.

In order to provide a solution for those using PHP 5.4, Symfony2 has a special class called
NativeSessionHandler20 which under PHP 5.4, extends from SessionHandler and under PHP 5.3 is just
a empty base class. This provides some interesting opportunities to leverage PHP 5.4 functionality if it is
available.

Save Handler Proxy
There are two kinds of save handler class proxies which inherit from AbstractProxy21: they are
NativeProxy22 and SessionHandlerProxy23.

NativeSessionStorage24 automatically injects storage handlers into a save handler proxy unless already
wrapped by one.

NativeProxy25 is used automatically under PHP 5.3 when internal PHP save handlers are specified using
the Native*SessionHandler classes, while SessionHandlerProxy26 will be used to wrap any custom save
handlers, that implement SessionHandlerInterface27.

Under PHP 5.4 and above, all session handlers implement SessionHandlerInterface28 including
Native*SessionHandler classes which inherit from SessionHandler29.

The proxy mechanism allows you to get more deeply involved in session save handler classes. A proxy for
example could be used to encrypt any session transaction without knowledge of the specific save handler.

16. http://php.net/manual/en/class.sessionhandler.php

17. http://php.net/manual/en/class.sessionhandlerinterface.php

18. http://php.net/manual/en/class.sessionhandlerinterface.php

19. http://php.net/manual/en/class.sessionhandler.php

20. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/Handler/NativeSessionHandler.html

21. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/Handler/AbstractProxy.html

22. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/Handler/NativeProxy.html

23. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/Handler/SessionHandlerProxy.html

24. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/NativeSessionStorage.html

25. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/Handler/NativeProxy.html

26. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/Handler/SessionHandlerProxy.html

27. http://php.net/manual/en/class.sessionhandlerinterface.php

28. http://php.net/manual/en/class.sessionhandlerinterface.php

29. http://php.net/manual/en/class.sessionhandler.php

PDF brought to you by
generated on February 20, 2013

Chapter 32: Configuring Sessions and Save Handlers | 140

http://sensiolabs.com

Listing 33-1

Chapter 33

Testing with Sessions

Symfony2 is designed from the ground up with code-testability in mind. In order to make your code
which utilizes session easily testable we provide two separate mock storage mechanisms for both unit
testing and functional testing.

Testing code using real sessions is tricky because PHP's workflow state is global and it is not possible to
have multiple concurrent sessions in the same PHP process.

The mock storage engines simulate the PHP session workflow without actually starting one allowing you
to test your code without complications. You may also run multiple instances in the same PHP process.

The mock storage drivers do not read or write the system globals session_id() or session_name(). Methods
are provided to simulate this if required:

• getId()1: Gets the session ID.
• setId()2: Sets the session ID.
• getName()3: Gets the session name.
• setName()4: Sets the session name.

Unit Testing
For unit testing where it is not necessary to persist the session, you should simply swap out the default
storage engine with MockArraySessionStorage5:

1
2
3
4

use Symfony\Component\HttpFoundation\Session\Storage\MockArraySessionStorage;
use Symfony\Component\HttpFoundation\Session\Session;

$session = new Session(new MockArraySessionStorage());

1. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/SessionStorageInterface.html#getId()

2. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/SessionStorageInterface.html#setId()

3. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/SessionStorageInterface.html#getName()

4. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/SessionStorageInterface.html#setName()

5. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/MockArraySessionStorage.html

PDF brought to you by
generated on February 20, 2013

Chapter 33: Testing with Sessions | 141

http://sensiolabs.com

Listing 33-2

Functional Testing
For functional testing where you may need to persist session data across separate PHP processes, simply
change the storage engine to MockFileSessionStorage6:

1
2
3
4

use Symfony\Component\HttpFoundation\Session\Session;
use Symfony\Component\HttpFoundation\Session\Storage\MockFileSessionStorage;

$session = new Session(new MockFileSessionStorage());

6. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/MockFileSessionStorage.html

PDF brought to you by
generated on February 20, 2013

Chapter 33: Testing with Sessions | 142

http://sensiolabs.com

Listing 34-1

Listing 34-2

Chapter 34

Trusting Proxies

If you find yourself behind some sort of proxy - like a load balancer - then certain header information
may be sent to you using special X-Forwarded-* headers. For example, the Host HTTP header is usually
used to return the requested host. But when you're behind a proxy, the true host may be stored in a X-
Forwarded-Host header.

Since HTTP headers can be spoofed, Symfony2 does not trust these proxy headers by default. If you are
behind a proxy, you should manually whitelist your proxy:

1
2
3
4
5

use Symfony\Component\HttpFoundation\Request;

$request = Request::createFromGlobals();
// only trust proxy headers coming from this IP address
$request->setTrustedProxies(array(192.0.0.1));

Configuring Header Names
By default, the following proxy headers are trusted:

• X-Forwarded-For Used in getClientIp()1;
• X-Forwarded-Host Used in getHost()2;
• X-Forwarded-Port Used in getPort()3;
• X-Forwarded-Proto Used in getScheme()4 and isSecure()5;

If your reverse proxy uses a different header name for any of these, you can configure that header name
via setTrustedHeaderName()6:

1. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#getClientIp()

2. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#getHost()

3. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#getPort()

4. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#getScheme()

5. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#isSecure()

6. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#setTrustedHeaderName()

PDF brought to you by
generated on February 20, 2013

Chapter 34: Trusting Proxies | 143

http://sensiolabs.com

Listing 34-3

1
2
3
4

$request->setTrustedHeaderName(Request::HEADER_CLIENT_IP, 'X-Proxy-For');
$request->setTrustedHeaderName(Request::HEADER_CLIENT_HOST, 'X-Proxy-Host');
$request->setTrustedHeaderName(Request::HEADER_CLIENT_PORT, 'X-Proxy-Port');
$request->setTrustedHeaderName(Request::HEADER_CLIENT_PROTO, 'X-Proxy-Proto');

Not trusting certain Headers
By default, if you whitelist your proxy's IP address, then all four headers listed above are trusted. If you
need to trust some of these headers but not others, you can do that as well:

1
2

// disables trusting the ``X-Forwarded-Proto`` header, the default header is used
$request->setTrustedHeaderName(Request::HEADER_CLIENT_PROTO, '');

PDF brought to you by
generated on February 20, 2013

Chapter 34: Trusting Proxies | 144

http://sensiolabs.com

Listing 35-1

Chapter 35

The HttpKernel Component

The HttpKernel Component provides a structured process for converting a Request into a
Response by making use of the event dispatcher. It's flexible enough to create a full-stack
framework (Symfony), a micro-framework (Silex) or an advanced CMS system (Drupal).

Installation
You can install the component in many different ways:

• Use the official Git repository (https://github.com/symfony/HttpKernel1);
• Install it via Composer (symfony/http-kernel on Packagist2).

The Workflow of a Request
Every HTTP web interaction begins with a request and ends with a response. Your job as a developer is
to create PHP code that reads the request information (e.g. the URL) and creates and returns a response
(e.g. an HTML page or JSON string).

../../_images/request-response-flow.png

Typically, some sort of framework or system is built to handle all the repetitive tasks (e.g. routing,
security, etc) so that a developer can easily build each page of the application. Exactly how these systems
are built varies greatly. The HttpKernel component provides an interface that formalizes the process of
starting with a request and creating the appropriate response. The component is meant to be the heart of
any application or framework, no matter how varied the architecture of that system:

1
2
3

namespace Symfony\Component\HttpKernel;

use Symfony\Component\HttpFoundation\Request;

1. https://github.com/symfony/HttpKernel

2. https://packagist.org/packages/symfony/http-kernel

PDF brought to you by
generated on February 20, 2013

Chapter 35: The HttpKernel Component | 145

http://sensiolabs.com

Listing 35-2

4
5
6
7
8
9

10
11
12
13
14
15
16
17

interface HttpKernelInterface
{

// ...

/**
* @return Response A Response instance
*/
public function handle(

Request $request,
$type = self::MASTER_REQUEST,
$catch = true

);
}

Internally, HttpKernel::handle()3 - the concrete implementation of
HttpKernelInterface::handle()4 - defines a workflow that starts with a Request5 and ends with a
Response6.

../../_images/01-workflow.png

The exact details of this workflow are the key to understanding how the kernel (and the Symfony
Framework or any other library that uses the kernel) works.

HttpKernel: Driven by Events

The HttpKernel::handle() method works internally by dispatching events. This makes the method
both flexible, but also a bit abstract, since all the "work" of a framework/application built with
HttpKernel is actually done in event listeners.

To help explain this process, this document looks at each step of the process and talks about how one
specific implementation of the HttpKernel - the Symfony Framework - works.

Initially, using the HttpKernel7 is really simple, and involves creating an event dispatcher and a controller
resolver (explained below). To complete your working kernel, you'll add more event listeners to the
events discussed below:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpKernel\HttpKernel;
use Symfony\Component\EventDispatcher\EventDispatcher;
use Symfony\Component\HttpKernel\Controller\ControllerResolver;

// create the Request object
$request = Request::createFromGlobals();

$dispatcher = new EventDispatcher();
// ... add some event listeners

// create your controller resolver
$resolver = new ControllerResolver();
// instantiate the kernel
$kernel = new HttpKernel($dispatcher, $resolver);

3. http://api.symfony.com/master/Symfony/Component/HttpKernel/HttpKernel.html#handle()

4. http://api.symfony.com/master/Symfony/Component/HttpKernel/HttpKernelInterface.html#handle()

5. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html

6. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html

7. http://api.symfony.com/master/Symfony/Component/HttpKernel/HttpKernel.html

PDF brought to you by
generated on February 20, 2013

Chapter 35: The HttpKernel Component | 146

http://sensiolabs.com

16
17
18
19
20
21
22
23
24
25

// actually execute the kernel, which turns the request into a response
// by dispatching events, calling a controller, and returning the response
$response = $kernel->handle($request);

// echo the content and send the headers
$response->send();

// triggers the kernel.terminate event
$kernel->terminate($request, $response);

See "A Full Working Example" for a more concrete implementation.

For general information on adding listeners to the events below, see Creating an Event Listener.

Fabien Potencier also wrote a wonderful series on using the HttpKernel component and other
Symfony2 components to create your own framework. See Create your own framework... on top of
the Symfony2 Components8.

1) The kernel.request event

Typical Purposes: To add more information to the Request, initialize parts of the system, or return a
Response if possible (e.g. a security layer that denies access)

Kernel Events Information Table

The first event that is dispatched inside HttpKernel::handle9 is kernel.request, which may have a
variety of different listeners.

../../_images/02-kernel-request.png

Listeners of this event can be quite varied. Some listeners - such as a security listener - might have enough
information to create a Response object immediately. For example, if a security listener determined that a
user doesn't have access, that listener may return a RedirectResponse10 to the login page or a 403 Access
Denied response.

If a Response is returned at this stage, the process skips directly to the kernel.response event.

../../_images/03-kernel-request-response.png

Other listeners simply initialize things or add more information to the request. For example, a listener
might determine and set the locale on the Request object.

Another common listener is routing. A router listener may process the Request and determine the
controller that should be rendered (see the next section). In fact, the Request object has an "attributes"
bag which is a perfect spot to store this extra, application-specific data about the request. This means
that if your router listener somehow determines the controller, it can store it on the Request attributes
(which can be used by your controller resolver).

Overall, the purpose of the kernel.request event is either to create and return a Response directly, or to
add information to the Request (e.g. setting the locale or setting some other information on the Request
attributes).

8. http://fabien.potencier.org/article/50/create-your-own-framework-on-top-of-the-symfony2-components-part-1

9. http://api.symfony.com/master/Symfony/Component/HttpKernel/HttpKernel.html#handle()

10. http://api.symfony.com/master/Symfony/Component/HttpFoundation/RedirectResponse.html

PDF brought to you by
generated on February 20, 2013

Chapter 35: The HttpKernel Component | 147

http://sensiolabs.com

Listing 35-3

kernel.request in the Symfony Framework

The most important listener to kernel.request in the Symfony Framework is the
RouterListener11. This class executes the routing layer, which returns an array of information
about the matched request, including the _controller and any placeholders that are in the route's
pattern (e.g. {slug}). See Routing Component.

This array of information is stored in the Request12 object's attributes array. Adding the routing
information here doesn't do anything yet, but is used next when resolving the controller.

2) Resolve the Controller

Assuming that no kernel.request listener was able to create a Response, the next step in HttpKernel is
to determine and prepare (i.e. resolve) the controller. The controller is the part of the end-application's
code that is responsible for creating and returning the Response for a specific page. The only requirement
is that it is a PHP callable - i.e. a function, method on an object, or a Closure.

But how you determine the exact controller for a request is entirely up to your application. This is the job
of the "controller resolver" - a class that implements ControllerResolverInterface13 and is one of the
constructor arguments to HttpKernel.

../../_images/04-resolve-controller.png

Your job is to create a class that implements the interface and fill in its two methods: getController and
getArguments. In fact, one default implementation already exists, which you can use directly or learn
from: ControllerResolver14. This implementation is explained more in the sidebar below:

1
2
3
4
5
6
7
8
9

10

namespace Symfony\Component\HttpKernel\Controller;

use Symfony\Component\HttpFoundation\Request;

interface ControllerResolverInterface
{

public function getController(Request $request);

public function getArguments(Request $request, $controller);
}

Internally, the HttpKernel::handle method first calls getController()15 on the controller resolver.
This method is passed the Request and is responsible for somehow determining and returning a PHP
callable (the controller) based on the request's information.

The second method, getArguments()16, will be called after another event - kernel.controller - is
dispatched.

11. http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/RouterListener.html

12. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html

13. http://api.symfony.com/master/Symfony/Component/HttpKernel/Controller/ControllerResolverInterface.html

14. http://api.symfony.com/master/Symfony/Component/HttpKernel/Controller/ControllerResolver.html

15. http://api.symfony.com/master/Symfony/Component/HttpKernel/Controller/ControllerResolverInterface.html#getController()

16. http://api.symfony.com/master/Symfony/Component/HttpKernel/Controller/ControllerResolverInterface.html#getArguments()

PDF brought to you by
generated on February 20, 2013

Chapter 35: The HttpKernel Component | 148

http://sensiolabs.com

Resolving the Controller in the Symfony2 Framework

The Symfony Framework uses the built-in ControllerResolver17 class (actually, it uses a sub-
class, which some extra functionality mentioned below). This class leverages the information that
was placed on the Request object's attributes property during the RouterListener.

getController

The ControllerResolver looks for a _controller key on the Request object's attributes property
(recall that this information is typically placed on the Request via the RouterListener). This
string is then transformed into a PHP callable by doing the following:

a) The AcmeDemoBundle:Default:index format of the _controller key is changed to another
string that contains the full class and method name of the controller by following the convention
used in Symfony2 - e.g. Acme\DemoBundle\Controller\DefaultController::indexAction. This
transformation is specific to the ControllerResolver18 sub-class used by the Symfony2
Framework.

b) A new instance of your controller class is instantiated with no constructor arguments.

c) If the controller implements ContainerAwareInterface19, setContainer is called on the
controller object and the container is passed to it. This step is also specific to the
ControllerResolver20 sub-class used by the Symfony2 Framework.

There are also a few other variations on the above process (e.g. if you're registering your controllers
as services).

3) The kernel.controller event
Typical Purposes: Initialize things or change the controller just before the controller is executed.

Kernel Events Information Table

After the controller callable has been determined, HttpKernel::handle dispatches the
kernel.controller event. Listeners to this event might initialize some part of the system that needs
to be initialized after certain things have been determined (e.g. the controller, routing information) but
before the controller is executed. For some examples, see the Symfony2 section below.

../../_images/06-kernel-controller.png

Listeners to this event can also change the controller callable completely by calling
FilterControllerEvent::setController21 on the event object that's passed to listeners on this event.

17. http://api.symfony.com/master/Symfony/Component/HttpKernel/Controller/ControllerResolver.html

18. http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/ControllerResolver.html

19. http://api.symfony.com/master/Symfony/Component/DependencyInjection/ContainerAwareInterface.html

20. http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/ControllerResolver.html

21. http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/FilterControllerEvent.html#setController()

PDF brought to you by
generated on February 20, 2013

Chapter 35: The HttpKernel Component | 149

http://sensiolabs.com

kernel.controller in the Symfony Framework

There are a few minor listeners to the kernel.controller event in the Symfony Framework, and
many deal with collecting profiler data when the profiler is enabled.

One interesting listener comes from the SensioFrameworkExtraBundle, which is packaged with the
Symfony Standard Edition. This listener's @ParamConverter functionality allows you to pass a full
object (e.g. a Post object) to your controller instead of a scalar value (e.g. an id parameter that
was on your route). The listener - ParamConverterListener - uses reflection to look at each of the
arguments of the controller and tries to use different methods to convert those to objects, which
are then stored in the attributes property of the Request object. Read the next section to see why
this is important.

4) Getting the Controller Arguments
Next, HttpKernel::handle calls getArguments()22. Remember that the controller returned in
getController is a callable. The purpose of getArguments is to return the array of arguments that
should be passed to that controller. Exactly how this is done is completely up to your design, though the
built-in ControllerResolver23 is a good example.

../../_images/07-controller-arguments.png

At this point the kernel has a PHP callable (the controller) and an array of arguments that should be
passed when executing that callable.

Getting the Controller Arguments in the Symfony2 Framework

Now that you know exactly what the controller callable (usually a method inside a controller
object) is, the ControllerResolver uses reflection24 on the callable to return an array of the names
of each of the arguments. It then iterates over each of these arguments and uses the following tricks
to determine which value should be passed for each argument:

a) If the Request attributes bag contains a key that matches the name of the argument, that
value is used. For example, if the first argument to a controller is $slug, and there is a slug
key in the Request attributes bag, that value is used (and typically this value came from the
RouterListener).

b) If the argument in the controller is type-hinted with Symfony's Request25 object, then the
Request is passed in as the value.

5) Calling the Controller

The next step is simple! HttpKernel::handle executes the controller.

../../_images/08-call-controller.png

The job of the controller is to build the response for the given resource. This could be an HTML page, a
JSON string or anything else. Unlike every other part of the process so far, this step is implemented by
the "end-developer", for each page that is built.

22. http://api.symfony.com/master/Symfony/Component/HttpKernel/Controller/ControllerResolverInterface.html#getArguments()

23. http://api.symfony.com/master/Symfony/Component/HttpKernel/Controller/ControllerResolver.html

24. http://php.net/manual/en/book.reflection.php

25. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html

PDF brought to you by
generated on February 20, 2013

Chapter 35: The HttpKernel Component | 150

http://sensiolabs.com

Usually, the controller will return a Response object. If this is true, then the work of the kernel is just
about done! In this case, the next step is the kernel.response event.

../../_images/09-controller-returns-response.png

But if the controller returns anything besides a Response, then the kernel has a little bit more work to do
- kernel.view (since the end goal is always to generate a Response object).

A controller must return something. If a controller returns null, an exception will be thrown
immediately.

6) The kernel.view event

Typical Purposes: Transform a non-Response return value from a controller into a Response

Kernel Events Information Table

If the controller doesn't return a Response object, then the kernel dispatches another event -
kernel.view. The job of a listener to this event is to use the return value of the controller (e.g. an array
of data or an object) to create a Response.

../../_images/10-kernel-view.png

This can be useful if you want to use a "view" layer: instead of returning a Response from the controller,
you return data that represents the page. A listener to this event could then use this data to create a
Response that is in the correct format (e.g HTML, json, etc).

At this stage, if no listener sets a response on the event, then an exception is thrown: either the controller
or one of the view listeners must always return a Response.

kernel.view in the Symfony Framework

There is no default listener inside the Symfony Framework for the kernel.view event. However,
one core bundle - SensioFrameworkExtraBundle - does add a listener to this event. If your controller
returns an array, and you place the @Template annotation above the controller, then this listener
renders a template, passes the array you returned from your controller to that template, and creates
a Response containing the returned content from that template.

Additionally, a popular community bundle FOSRestBundle26 implements a listener on this event
which aims to give you a robust view layer capable of using a single controller to return many
different content-type responses (e.g. HTML, JSON, XML, etc).

7) The kernel.response event

Typical Purposes: Modify the Response object just before it is sent

Kernel Events Information Table

The end goal of the kernel is to transform a Request into a Response. The Response might be created
during the kernel.request event, returned from the controller, or returned by one of the listeners to the
kernel.view event.

Regardless of who creates the Response, another event - kernel.response is dispatched directly
afterwards. A typical listener to this event will modify the Response object in some way, such as

26. https://github.com/friendsofsymfony/FOSRestBundle

PDF brought to you by
generated on February 20, 2013

Chapter 35: The HttpKernel Component | 151

http://sensiolabs.com

Listing 35-4

modifying headers, adding cookies, or even changing the content of the Response itself (e.g. injecting
some JavaScript before the end </body> tag of an HTML response).

After this event is dispatched, the final Response object is returned from handle()27. In the most typical
use-case, you can then call the send()28 method, which sends the headers and prints the Response
content.

kernel.response in the Symfony Framework

There are several minor listeners on this event inside the Symfony Framework, and most modify
the response in some way. For example, the WebDebugToolbarListener29 injects some JavaScript
at the bottom of your page in the dev environment which causes the web debug toolbar to be
displayed. Another listener, ContextListener30 serializes the current user's information into the
session so that it can be reloaded on the next request.

8) The kernel.terminate event

New in version 2.1: The kernel.terminate event is new to Symfony 2.1.

Typical Purposes: To perform some "heavy" action after the response has been streamed to the user

Kernel Events Information Table

The final event of the HttpKernel process is kernel.terminate and is unique because it occurs after the
HttpKernel::handle method, and after the response is send to the user. Recall from above, then the
code that uses the kernel, ends like this:

1
2
3
4
5

// echo the content and send the headers
$response->send();

// triggers the kernel.terminate event
$kernel->terminate($request, $response);

As you can see, by calling $kernel->terminate after sending the response, you will trigger the
kernel.terminate event where you can perform certain actions that you may have delayed in order to
return the response as quickly as possible to the client (e.g. sending emails).

Using the kernel.terminate event is optional, and should only be called if your kernel
implements TerminableInterface31.

27. http://api.symfony.com/master/Symfony/Component/HttpKernel/HttpKernel.html#handle()

28. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html#send()

29. http://api.symfony.com/master/Symfony/Bundle/WebProfilerBundle/EventListener/WebDebugToolbarListener.html

30. http://api.symfony.com/master/Symfony/Component/Security/Http/Firewall/ContextListener.html

31. http://api.symfony.com/master/Symfony/Component/HttpKernel/TerminableInterface.html

PDF brought to you by
generated on February 20, 2013

Chapter 35: The HttpKernel Component | 152

http://sensiolabs.com

kernel.terminate in the Symfony Framework

If you use the SwiftmailerBundle with Symfony2 and use memory spooling, then the
EmailSenderListener32 is activated, which actually delivers any emails that you scheduled to send
during the request.

Handling Exceptions:: the kernel.exception event

Typical Purposes: Handle some type of exception and create an appropriate Response to return for the
exception

Kernel Events Information Table

If an exception is thrown at any point inside HttpKernel::handle, another event - kernel.exception is
thrown. Internally, the body of the handle function is wrapped in a try-catch block. When any exception
is thrown, the kernel.exception event is dispatched so that your system can somehow respond to the
exception.

../../_images/11-kernel-exception.png

Each listener to this event is passed a GetResponseForExceptionEvent33 object, which you can use to
access the original exception via the getException()34 method. A typical listener on this event will check
for a certain type of exception and create an appropriate error Response.

For example, to generate a 404 page, you might throw a special type of exception and then add a
listener on this event that looks for this exception and creates and returns a 404 Response. In fact, the
HttpKernel component comes with an ExceptionListener35, which if you choose to use, will do this
and more by default (see the sidebar below for more details).

kernel.exception in the Symfony Framework

There are two main listeners to kernel.exception when using the Symfony Framework.

ExceptionListener in HttpKernel

The first comes core to the HttpKernel component and is called ExceptionListener36. The
listener has several goals:

1) The thrown exception is converted into a FlattenException37 object, which contains all the
information about the request, but which can be printed and serialized.

2) If the original exception implements HttpExceptionInterface38, then getStatusCode and
getHeaders are called on the exception and used to populate the headers and status code of the
FlattenException object. The idea is that these are used in the next step when creating the final
response.

3) A controller is executed and passed the flattened exception. The exact controller to render is
passed as a constructor argument to this listener. This controller will return the final Response for
this error page.

ExceptionListener in Security

The other important listener is the ExceptionListener39. The goal of this listener is to handle
security exceptions and, when appropriate, help the user to authenticate (e.g. redirect to the login
page).

32. http://api.symfony.com/master/Symfony/Bundle/SwiftmailerBundle/EventListener/EmailSenderListener.html

33. http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/GetResponseForExceptionEvent.html

34. http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/GetResponseForExceptionEvent.html#getException()

35. http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/ExceptionListener.html

PDF brought to you by
generated on February 20, 2013

Chapter 35: The HttpKernel Component | 153

http://sensiolabs.com

Listing 35-5

Creating an Event Listener
As you've seen, you can create and attach event listeners to any of the events dispatched during the
HttpKernel::handle cycle. Typically a listener is a PHP class with a method that's executed, but it can
be anything. For more information on creating and attaching event listeners, see The Event Dispatcher
Component.

The name of each of the "kernel" events is defined as a constant on the KernelEvents40 class.
Additionally, each event listener is passed a single argument, which is some sub-class of KernelEvent41.
This object contains information about the current state of the system and each event has their own event
object:

Name KernelEvents Constant Argument passed to the listener

kernel.request KernelEvents::REQUEST GetResponseEvent42

kernel.controller KernelEvents::CONTROLLER FilterControllerEvent43

kernel.view KernelEvents::VIEW GetResponseForControllerResultEvent44

kernel.response KernelEvents::RESPONSE FilterResponseEvent45

kernel.terminate KernelEvents::TERMINATE PostResponseEvent46

kernel.exception KernelEvents::EXCEPTION GetResponseForExceptionEvent47

A Full Working Example
When using the HttpKernel component, you're free to attach any listeners to the core events and use
any controller resolver that implements the ControllerResolverInterface48. However, the HttpKernel
component comes with some built-in listeners and a built-in ControllerResolver that can be used to
create a working example:

1
2
3
4
5
6
7
8
9

10
11
12

use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\HttpKernel\HttpKernel;
use Symfony\Component\EventDispatcher\EventDispatcher;
use Symfony\Component\HttpKernel\Controller\ControllerResolver;
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;
use Symfony\Component\Routing\Matcher\UrlMatcher;
use Symfony\Component\Routing\RequestContext;

$routes = new RouteCollection();
$routes->add('hello', new Route('/hello/{name}', array('_controller' =>

36. http://api.symfony.com/master/Symfony/Component/HttpKernel/EventListener/ExceptionListener.html

37. http://api.symfony.com/master/Symfony/Component/HttpKernel/Exception/FlattenException.html

38. http://api.symfony.com/master/Symfony/Component/HttpKernel/Exception/HttpExceptionInterface.html

39. http://api.symfony.com/master/Symfony/Component/Security/Http/Firewall/ExceptionListener.html

40. http://api.symfony.com/master/Symfony/Component/HttpKernel/KernelEvents.html

41. http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/KernelEvent.html

42. http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/GetResponseEvent.html

43. http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/FilterControllerEvent.html

44. http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/GetResponseForControllerResultEvent.html

45. http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/FilterResponseEvent.html

46. http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/PostResponseEvent.html

47. http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/GetResponseForExceptionEvent.html

48. http://api.symfony.com/master/Symfony/Component/HttpKernel/Controller/ControllerResolverInterface.html

PDF brought to you by
generated on February 20, 2013

Chapter 35: The HttpKernel Component | 154

http://sensiolabs.com

Listing 35-6

Listing 35-7

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

function (Request $request) {
return new Response(sprintf("Hello %s", $request->get('name')));

}
)));

$request = Request::createFromGlobals();

$matcher = new UrlMatcher($routes, new RequestContext());

$dispatcher = new EventDispatcher();
$dispatcher->addSubscriber(new RouterListener($matcher));

$resolver = new ControllerResolver();
$kernel = new HttpKernel($dispatcher, $resolver);

$response = $kernel->handle($request);
$response->send();

$kernel->terminate($request, $response);

Sub Requests
In addition to the "main" request that's sent into HttpKernel::handle, you can also send so-called "sub
request". A sub request looks and acts like any other request, but typically serves to render just one small
portion of a page instead of a full page. You'll most commonly make sub-requests from your controller
(or perhaps from inside a template, that's being rendered by your controller).

../../_images/sub-request.png

To execute a sub request, use HttpKernel::handle, but change the second arguments as follows:

1
2
3
4
5
6
7
8
9

10
11
12

use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpKernel\HttpKernelInterface;

// ...

// create some other request manually as needed
$request = new Request();
// for example, possibly set its _controller manually
$request->attributes->add('_controller', '...');

$response = $kernel->handle($request, HttpKernelInterface::SUB_REQUEST);
// do something with this response

This creates another full request-response cycle where this new Request is transformed into a Response.
The only difference internally is that some listeners (e.g. security) may only act upon the master request.
Each listener is passed some sub-class of KernelEvent49, whose getRequestType()50 can be used to
figure out if the current request is a "master" or "sub" request.

For example, a listener that only needs to act on the master request may look like this:

49. http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/KernelEvent.html

50. http://api.symfony.com/master/Symfony/Component/HttpKernel/Event/KernelEvent.html#getRequestType()

PDF brought to you by
generated on February 20, 2013

Chapter 35: The HttpKernel Component | 155

http://sensiolabs.com

1
2
3
4
5
6
7
8
9

10
11

use Symfony\Component\HttpKernel\HttpKernelInterface;
// ...

public function onKernelRequest(GetResponseEvent $event)
{

if (HttpKernelInterface::MASTER_REQUEST !== $event->getRequestType()) {
return;

}

// ...
}

PDF brought to you by
generated on February 20, 2013

Chapter 35: The HttpKernel Component | 156

http://sensiolabs.com

Chapter 36

The Locale Component

Locale component provides fallback code to handle cases when the intl extension is missing.
Additionally it extends the implementation of a native Locale1 class with several handy
methods.

Replacement for the following functions and classes is provided:

• intl_is_failure2

• intl_get_error_code3

• intl_get_error_message4

• Collator5

• IntlDateFormatter6

• Locale7

• NumberFormatter8

Stub implementation only supports the en locale.

Installation
You can install the component in many different ways:

• Use the official Git repository (https://github.com/symfony/Locale9);

1. http://php.net/manual/en/class.locale.php

2. http://php.net/manual/en/function.intl-is-failure.php

3. http://php.net/manual/en/function.intl-get-error-code.php

4. http://php.net/manual/en/function.intl-get-error-message.php

5. http://php.net/manual/en/class.collator.php

6. http://php.net/manual/en/class.intldateformatter.php

7. http://php.net/manual/en/class.locale.php

8. http://php.net/manual/en/class.numberformatter.php

9. https://github.com/symfony/Locale

PDF brought to you by
generated on February 20, 2013

Chapter 36: The Locale Component | 157

http://sensiolabs.com

Listing 36-1

Listing 36-2

• Install it via Composer (symfony/locale on Packagist10).

Usage
Taking advantage of the fallback code includes requiring function stubs and adding class stubs to the
autoloader.

When using the ClassLoader component following code is sufficient to supplement missing intl
extension:

1
2
3
4
5
6
7

if (!function_exists('intl_get_error_code')) {
require __DIR__.'/path/to/src/Symfony/Component/Locale/Resources/stubs/functions.php';

$loader->registerPrefixFallbacks(
array(__DIR__.'/path/to/src/Symfony/Component/Locale/Resources/stubs')

);
}

Locale11 class enriches native Locale12 class with additional features:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

use Symfony\Component\Locale\Locale;

// Get the country names for a locale or get all country codes
$countries = Locale::getDisplayCountries('pl');
$countryCodes = Locale::getCountries();

// Get the language names for a locale or get all language codes
$languages = Locale::getDisplayLanguages('fr');
$languageCodes = Locale::getLanguages();

// Get the locale names for a given code or get all locale codes
$locales = Locale::getDisplayLocales('en');
$localeCodes = Locale::getLocales();

// Get ICU versions
$icuVersion = Locale::getIntlIcuVersion();
$icuDataVersion = Locale::getIcuDataVersion();

10. https://packagist.org/packages/symfony/locale

11. http://api.symfony.com/master/Symfony/Component/Locale/Locale.html

12. http://php.net/manual/en/class.locale.php

PDF brought to you by
generated on February 20, 2013

Chapter 36: The Locale Component | 158

http://sensiolabs.com

Listing 37-1

Chapter 37

The Process Component

The Process Component executes commands in sub-processes.

Installation
You can install the component in many different ways:

• Use the official Git repository (https://github.com/symfony/Process1);
• Install it via Composer (symfony/process on Packagist2).

Usage
The Process3 class allows you to execute a command in a sub-process:

1
2
3
4
5
6
7
8
9

10

use Symfony\Component\Process\Process;

$process = new Process('ls -lsa');
$process->setTimeout(3600);
$process->run();
if (!$process->isSuccessful()) {

throw new \RuntimeException($process->getErrorOutput());
}

print $process->getOutput();

The run()4 method takes care of the subtle differences between the different platforms when executing
the command.

1. https://github.com/symfony/Process

2. https://packagist.org/packages/symfony/process

3. http://api.symfony.com/master/Symfony/Component/Process/Process.html

4. http://api.symfony.com/master/Symfony/Component/Process/Process.html#run()

PDF brought to you by
generated on February 20, 2013

Chapter 37: The Process Component | 159

http://sensiolabs.com

Listing 37-2

Listing 37-3

Listing 37-4

New in version 2.2: The getIncrementalOutput() and getIncrementalErrorOutput() methods
were added in Symfony 2.2.

The getOutput() method always return the whole content of the standard output of the command and
getErrorOutput() the content of the error output. Alternatively, the getIncrementalOutput()5 and
getIncrementalErrorOutput()6 methods returns the new outputs since the last call.

When executing a long running command (like rsync-ing files to a remote server), you can give feedback
to the end user in real-time by passing an anonymous function to the run()7 method:

1
2
3
4
5
6
7
8
9

10

use Symfony\Component\Process\Process;

$process = new Process('ls -lsa');
$process->run(function ($type, $buffer) {

if ('err' === $type) {
echo 'ERR > '.$buffer;

} else {
echo 'OUT > '.$buffer;

}
});

If you want to execute some PHP code in isolation, use the PhpProcess instead:

1
2
3
4
5
6
7

use Symfony\Component\Process\PhpProcess;

$process = new PhpProcess(<<<EOF
<?php echo 'Hello World'; ?>

EOF
);
$process->run();

New in version 2.1: The ProcessBuilder class has been as of 2.1.

To make your code work better on all platforms, you might want to use the ProcessBuilder8 class
instead:

1
2
3
4

use Symfony\Component\Process\ProcessBuilder;

$builder = new ProcessBuilder(array('ls', '-lsa'));
$builder->getProcess()->run();

5. http://api.symfony.com/master/Symfony/Component/Process/Process.html#getIncrementalOutput()

6. http://api.symfony.com/master/Symfony/Component/Process/Process.html#getIncrementalErrorOutput()

7. http://api.symfony.com/master/Symfony/Component/Process/Process.html#run()

8. http://api.symfony.com/master/Symfony/Component/Process/ProcessBuilder.html

PDF brought to you by
generated on February 20, 2013

Chapter 37: The Process Component | 160

http://sensiolabs.com

Listing 38-1

Chapter 38

The Routing Component

The Routing Component maps an HTTP request to a set of configuration variables.

Installation
You can install the component in many different ways:

• Use the official Git repository (https://github.com/symfony/Routing1);
• Install it via Composer (symfony/routing on Packagist2).

Usage
In order to set up a basic routing system you need three parts:

• A RouteCollection3, which contains the route definitions (instances of the class Route4)
• A RequestContext5, which has information about the request
• A UrlMatcher6, which performs the mapping of the request to a single route

Let's see a quick example. Notice that this assumes that you've already configured your autoloader to
load the Routing component:

1
2
3
4
5

use Symfony\Component\Routing\Matcher\UrlMatcher;
use Symfony\Component\Routing\RequestContext;
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

1. https://github.com/symfony/Routing

2. https://packagist.org/packages/symfony/routing

3. http://api.symfony.com/master/Symfony/Component/Routing/RouteCollection.html

4. http://api.symfony.com/master/Symfony/Component/Routing/Route.html

5. http://api.symfony.com/master/Symfony/Component/Routing/RequestContext.html

6. http://api.symfony.com/master/Symfony/Component/Routing/Matcher/UrlMatcher.html

PDF brought to you by
generated on February 20, 2013

Chapter 38: The Routing Component | 161

http://sensiolabs.com

Listing 38-2

6
7
8
9

10
11
12
13
14
15

$route = new Route('/foo', array('controller' => 'MyController'));
$routes = new RouteCollection();
$routes->add('route_name', $route);

$context = new RequestContext($_SERVER['REQUEST_URI']);

$matcher = new UrlMatcher($routes, $context);

$parameters = $matcher->match('/foo');
// array('controller' => 'MyController', '_route' => 'route_name')

Be careful when using $_SERVER['REQUEST_URI'], as it may include any query parameters on the
URL, which will cause problems with route matching. An easy way to solve this is to use the
HttpFoundation component as explained below.

You can add as many routes as you like to a RouteCollection7.

The RouteCollection::add()8 method takes two arguments. The first is the name of the route. The
second is a Route9 object, which expects a URL path and some array of custom variables in its
constructor. This array of custom variables can be anything that's significant to your application, and is
returned when that route is matched.

If no matching route can be found a ResourceNotFoundException10 will be thrown.

In addition to your array of custom variables, a _route key is added, which holds the name of the
matched route.

Defining routes

A full route definition can contain up to seven parts:

1. The URL path route. This is matched against the URL passed to the RequestContext, and can contain
named wildcard placeholders (e.g. {placeholders}) to match dynamic parts in the URL.

2. An array of default values. This contains an array of arbitrary values that will be returned when the
request matches the route.

3. An array of requirements. These define constraints for the values of the placeholders as regular
expressions.

4. An array of options. These contain internal settings for the route and are the least commonly needed.
5. A host. This is matched against the host of the request. See How to match a route based on the

Host for more details.
6. An array of schemes. These enforce a certain HTTP scheme (http, https).
7. An array of methods. These enforce a certain HTTP request method (HEAD, GET, POST, ...).

New in version 2.2: Host matching support was added in Symfony 2.2

Take the following route, which combines several of these ideas:

7. http://api.symfony.com/master/Symfony/Component/Routing/RouteCollection.html

8. http://api.symfony.com/master/Symfony/Component/Routing/RouteCollection.html#add()

9. http://api.symfony.com/master/Symfony/Component/Routing/Route.html

10. http://api.symfony.com/master/Symfony/Component/Routing/Exception/ResourceNotFoundException.html

PDF brought to you by
generated on February 20, 2013

Chapter 38: The Routing Component | 162

http://sensiolabs.com

Listing 38-3

Listing 38-4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

$route = new Route(
'/archive/{month}', // path
array('controller' => 'showArchive'), // default values
array('month' => '[0-9]{4}-[0-9]{2}', 'subdomain' => 'www|m'), // requirements
array(), // options
'{subdomain}.example.com', // host
array(), // schemes
array() // methods

);

// ...

$parameters = $matcher->match('/archive/2012-01');
// array(
// 'controller' => 'showArchive',
// 'month' => '2012-01',
// 'subdomain' => 'www',
// '_route' => ...
//)

$parameters = $matcher->match('/archive/foo');
// throws ResourceNotFoundException

In this case, the route is matched by /archive/2012-01, because the {month} wildcard matches the
regular expression wildcard given. However, /archive/foo does not match, because "foo" fails the
month wildcard.

If you want to match all urls which start with a certain path and end in an arbitrary suffix you can
use the following route definition:

1
2
3
4
5

$route = new Route(
'/start/{suffix}',
array('suffix' => ''),
array('suffix' => '.*')

);

Using Prefixes

You can add routes or other instances of RouteCollection11 to another collection. This way you can
build a tree of routes. Additionally you can define a prefix, default requirements, default options and host
to all routes of a subtree with the addPrefix()12 method:

1
2
3
4
5
6
7
8
9

10

$rootCollection = new RouteCollection();

$subCollection = new RouteCollection();
$subCollection->add(...);
$subCollection->add(...);
$subCollection->addPrefix(

'/prefix', // prefix
array(), // requirements
array(), // options
'admin.example.com', // host

11. http://api.symfony.com/master/Symfony/Component/Routing/RouteCollection.html

12. http://api.symfony.com/master/Symfony/Component/Routing/RouteCollection.html#addPrefix()

PDF brought to you by
generated on February 20, 2013

Chapter 38: The Routing Component | 163

http://sensiolabs.com

Listing 38-5

Listing 38-6

Listing 38-7

11
12
13
14

array('https') // schemes
);

$rootCollection->addCollection($subCollection);

New in version 2.2: The addPrefix method is added in Symfony2.2. This was part of the
addCollection method in older versions.

Set the Request Parameters

The RequestContext13 provides information about the current request. You can define all parameters of
an HTTP request with this class via its constructor:

1
2
3
4
5
6
7
8

public function __construct(
$baseUrl = '',
$method = 'GET',
$host = 'localhost',
$scheme = 'http',
$httpPort = 80,
$httpsPort = 443

)

Normally you can pass the values from the $_SERVER variable to populate the RequestContext14. But If
you use the HttpFoundation component, you can use its Request15 class to feed the RequestContext16 in
a shortcut:

1
2
3
4

use Symfony\Component\HttpFoundation\Request;

$context = new RequestContext();
$context->fromRequest(Request::createFromGlobals());

Generate a URL

While the UrlMatcher17 tries to find a route that fits the given request you can also build a URL from a
certain route:

1
2
3
4
5
6
7
8
9

10

use Symfony\Component\Routing\Generator\UrlGenerator;

$routes = new RouteCollection();
$routes->add('show_post', new Route('/show/{slug}'));

$context = new RequestContext($_SERVER['REQUEST_URI']);

$generator = new UrlGenerator($routes, $context);

$url = $generator->generate('show_post', array(

13. http://api.symfony.com/master/Symfony/Component/Routing/RequestContext.html

14. http://api.symfony.com/master/Symfony/Component/Routing/RequestContext.html

15. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html

16. http://api.symfony.com/master/Symfony/Component/Routing/RequestContext.html

17. http://api.symfony.com/master/Symfony/Component/Routing/Matcher/UrlMatcher.html

PDF brought to you by
generated on February 20, 2013

Chapter 38: The Routing Component | 164

http://sensiolabs.com

Listing 38-8

Listing 38-9

11
12
13

'slug' => 'my-blog-post'
));
// /show/my-blog-post

If you have defined a scheme, an absolute URL is generated if the scheme of the current
RequestContext18 does not match the requirement.

Load Routes from a File

You've already seen how you can easily add routes to a collection right inside PHP. But you can also load
routes from a number of different files.

The Routing component comes with a number of loader classes, each giving you the ability to load a
collection of route definitions from an external file of some format. Each loader expects a FileLocator19

instance as the constructor argument. You can use the FileLocator20 to define an array of paths in which
the loader will look for the requested files. If the file is found, the loader returns a RouteCollection21.

If you're using the YamlFileLoader, then route definitions look like this:

1
2
3
4
5
6
7
8

routes.yml
route1:

path: /foo
defaults: { _controller: 'MyController::fooAction' }

route2:
path: /foo/bar
defaults: { _controller: 'MyController::foobarAction' }

To load this file, you can use the following code. This assumes that your routes.yml file is in the same
directory as the below code:

1
2
3
4
5
6
7

use Symfony\Component\Config\FileLocator;
use Symfony\Component\Routing\Loader\YamlFileLoader;

// look inside *this* directory
$locator = new FileLocator(array(__DIR__));
$loader = new YamlFileLoader($locator);
$collection = $loader->load('routes.yml');

Besides YamlFileLoader22 there are two other loaders that work the same way:

• XmlFileLoader23

• PhpFileLoader24

If you use the PhpFileLoader25 you have to provide the name of a php file which returns a
RouteCollection26:

18. http://api.symfony.com/master/Symfony/Component/Routing/RequestContext.html

19. http://api.symfony.com/master/Symfony/Component/Config/FileLocator.html

20. http://api.symfony.com/master/Symfony/Component/Config/FileLocator.html

21. http://api.symfony.com/master/Symfony/Component/Routing/RouteCollection.html

22. http://api.symfony.com/master/Symfony/Component/Routing/Loader/YamlFileLoader.html

23. http://api.symfony.com/master/Symfony/Component/Routing/Loader/XmlFileLoader.html

24. http://api.symfony.com/master/Symfony/Component/Routing/Loader/PhpFileLoader.html

25. http://api.symfony.com/master/Symfony/Component/Routing/Loader/PhpFileLoader.html

PDF brought to you by
generated on February 20, 2013

Chapter 38: The Routing Component | 165

http://sensiolabs.com

Listing 38-10

Listing 38-11

Listing 38-12

1
2
3
4
5
6
7
8
9

10
11
12

// RouteProvider.php
use Symfony\Component\Routing\RouteCollection;
use Symfony\Component\Routing\Route;

$collection = new RouteCollection();
$collection->add(

'route_name',
new Route('/foo', array('controller' => 'ExampleController'))

);
// ...

return $collection;

Routes as Closures

There is also the ClosureLoader27, which calls a closure and uses the result as a RouteCollection28:

1
2
3
4
5
6
7
8

use Symfony\Component\Routing\Loader\ClosureLoader;

$closure = function() {
return new RouteCollection();

};

$loader = new ClosureLoader();
$collection = $loader->load($closure);

Routes as Annotations

Last but not least there are AnnotationDirectoryLoader29 and AnnotationFileLoader30 to load route
definitions from class annotations. The specific details are left out here.

The all-in-one Router

The Router31 class is a all-in-one package to quickly use the Routing component. The constructor expects
a loader instance, a path to the main route definition and some other settings:

1
2
3
4
5
6
7

public function __construct(
LoaderInterface $loader,
$resource,
array $options = array(),
RequestContext $context = null,
array $defaults = array()

);

With the cache_dir option you can enable route caching (if you provide a path) or disable caching (if it's
set to null). The caching is done automatically in the background if you want to use it. A basic example
of the Router32 class would look like:

26. http://api.symfony.com/master/Symfony/Component/Routing/RouteCollection.html

27. http://api.symfony.com/master/Symfony/Component/Routing/Loader/ClosureLoader.html

28. http://api.symfony.com/master/Symfony/Component/Routing/RouteCollection.html

29. http://api.symfony.com/master/Symfony/Component/Routing/Loader/AnnotationDirectoryLoader.html

30. http://api.symfony.com/master/Symfony/Component/Routing/Loader/AnnotationFileLoader.html

31. http://api.symfony.com/master/Symfony/Component/Routing/Router.html

32. http://api.symfony.com/master/Symfony/Component/Routing/Router.html

PDF brought to you by
generated on February 20, 2013

Chapter 38: The Routing Component | 166

http://sensiolabs.com

Listing 38-13 1
2
3
4
5
6
7
8
9

10

$locator = new FileLocator(array(__DIR__));
$requestContext = new RequestContext($_SERVER['REQUEST_URI']);

$router = new Router(
new YamlFileLoader($locator),
'routes.yml',
array('cache_dir' => __DIR__.'/cache'),
$requestContext

);
$router->match('/foo/bar');

If you use caching, the Routing component will compile new classes which are saved in the
cache_dir. This means your script must have write permissions for that location.

PDF brought to you by
generated on February 20, 2013

Chapter 38: The Routing Component | 167

http://sensiolabs.com

Listing 39-1

Listing 39-2

Chapter 39

How to match a route based on the Host

New in version 2.2: Host matching support was added in Symfony 2.2

You can also match on the HTTP host of the incoming request.

1
2
3
4
5
6
7
8

mobile_homepage:
path: /
host: m.example.com
defaults: { _controller: AcmeDemoBundle:Main:mobileHomepage }

homepage:
path: /
defaults: { _controller: AcmeDemoBundle:Main:homepage }

Both routes match the same path /, however the first one will match only if the host is m.example.com.

Placeholders and Requirements in Hostname Patterns
If you're using the DependencyInjection Component (or the full Symfony2 Framework), then you can use
service container parameters as variables anywhere in your routes.

You can avoid hardcoding the domain name by using a placeholder and a requirement. The %domain% in
requirements is replaced by the value of the domain dependency injection container parameter.

mobile_homepage:
path: /
host: m.{domain}
defaults: { _controller: AcmeDemoBundle:Main:mobileHomepage }
requirements:

domain: %domain%

homepage:

PDF brought to you by
generated on February 20, 2013

Chapter 39: How to match a route based on the Host | 168

http://sensiolabs.com

Listing 39-3

path: /
defaults: { _controller: AcmeDemoBundle:Main:homepage }

Adding a Host Regex to Imported Routes
You can set a host regex on imported routes:

1
2
3
4

app/config/routing.yml
acme_hello:

resource: "@AcmeHelloBundle/Resources/config/routing.yml"
host: "hello.example.com"

The host hello.example.com will be set on each route loaded from the new routing resource.

PDF brought to you by
generated on February 20, 2013

Chapter 39: How to match a route based on the Host | 169

http://sensiolabs.com

Chapter 40

The Security Component

Introduction
The Security Component provides a complete security system for your web application. It ships with
facilities for authenticating using HTTP basic or digest authentication, interactive form login or X.509
certificate login, but also allows you to implement your own authentication strategies. Furthermore,
the component provides ways to authorize authenticated users based on their roles, and it contains an
advanced ACL system.

Installation
You can install the component in many different ways:

• Use the official Git repository (https://github.com/symfony/Security1);
• Install it via Composer (symfony/security on Packagist2).

Sections
• The Firewall and Security Context
• Authentication
• Authorization

1. https://github.com/symfony/Security

2. https://packagist.org/packages/symfony/security

PDF brought to you by
generated on February 20, 2013

Chapter 40: The Security Component | 170

http://sensiolabs.com

Listing 41-1

Listing 41-2

Chapter 41

The Firewall and Security Context

Central to the Security Component is the security context, which is an instance of
SecurityContextInterface1. When all steps in the process of authenticating the user have been taken
successfully, you can ask the security context if the authenticated user has access to a certain action or
resource of the application:

1
2
3
4
5
6
7
8
9

10

use Symfony\Component\Security\SecurityContext;
use Symfony\Component\Security\Core\Exception\AccessDeniedException;

$securityContext = new SecurityContext();

// ... authenticate the user

if (!$securityContext->isGranted('ROLE_ADMIN')) {
throw new AccessDeniedException();

}

A Firewall for HTTP Requests
Authenticating a user is done by the firewall. An application may have multiple secured areas, so the
firewall is configured using a map of these secured areas. For each of these areas, the map contains a
request matcher and a collection of listeners. The request matcher gives the firewall the ability to find out
if the current request points to a secured area. The listeners are then asked if the current request can be
used to authenticate the user:

1
2
3
4
5
6

use Symfony\Component\Security\Http\FirewallMap;
use Symfony\Component\HttpFoundation\RequestMatcher;
use Symfony\Component\Security\Http\Firewall\ExceptionListener;

$map = new FirewallMap();

1. http://api.symfony.com/master/Symfony/Component/Security/Core/SecurityContextInterface.html

PDF brought to you by
generated on February 20, 2013

Chapter 41: The Firewall and Security Context | 171

http://sensiolabs.com

Listing 41-3

7
8
9

10
11
12
13
14

$requestMatcher = new RequestMatcher('^/secured-area/');

// instances of Symfony\Component\Security\Http\Firewall\ListenerInterface
$listeners = array(...);

$exceptionListener = new ExceptionListener(...);

$map->add($requestMatcher, $listeners, $exceptionListener);

The firewall map will be given to the firewall as its first argument, together with the event dispatcher that
is used by the HttpKernel2:

1
2
3
4
5
6
7
8
9

use Symfony\Component\Security\Http\Firewall;
use Symfony\Component\HttpKernel\KernelEvents;

// the EventDispatcher used by the HttpKernel
$dispatcher = ...;

$firewall = new Firewall($map, $dispatcher);

$dispatcher->addListener(KernelEvents::REQUEST, array($firewall, 'onKernelRequest');

The firewall is registered to listen to the kernel.request event that will be dispatched by the HttpKernel
at the beginning of each request it processes. This way, the firewall may prevent the user from going any
further than allowed.

Firewall listeners

When the firewall gets notified of the kernel.request event, it asks the firewall map if the request
matches one of the secured areas. The first secured area that matches the request will return a set of
corresponding firewall listeners (which each implement ListenerInterface3). These listeners will all
be asked to handle the current request. This basically means: find out if the current request contains
any information by which the user might be authenticated (for instance the Basic HTTP authentication
listener checks if the request has a header called PHP_AUTH_USER).

Exception listener

If any of the listeners throws an AuthenticationException4, the exception listener that was provided
when adding secured areas to the firewall map will jump in.

The exception listener determines what happens next, based on the arguments it received when it
was created. It may start the authentication procedure, perhaps ask the user to supply his credentials
again (when he has only been authenticated based on a "remember-me" cookie), or transform the
exception into an AccessDeniedHttpException5, which will eventually result in an "HTTP/1.1 403:
Access Denied" response.

Entry points

When the user is not authenticated at all (i.e. when the security context has no token yet), the firewall's
entry point will be called to "start" the authentication process. An entry point should implement
AuthenticationEntryPointInterface6, which has only one method: start()7. This method receives

2. http://api.symfony.com/master/Symfony/Component/HttpKernel/HttpKernel.html

3. http://api.symfony.com/master/Symfony/Component/Security/Http/Firewall/ListenerInterface.html

4. http://api.symfony.com/master/Symfony/Component/Security/Core/Exception/AuthenticationException.html

5. http://api.symfony.com/master/Symfony/Component/HttpKernel/Exception/AccessDeniedHttpException.html

PDF brought to you by
generated on February 20, 2013

Chapter 41: The Firewall and Security Context | 172

http://sensiolabs.com

the current Request8 object and the exception by which the exception listener was triggered. The method
should return a Response9 object. This could be, for instance, the page containing the login form or, in
the case of Basic HTTP authentication, a response with a WWW-Authenticate header, which will prompt
the user to supply his username and password.

Flow: Firewall, Authentication, Authorization
Hopefully you can now see a little bit about how the "flow" of the security context works:

1. the Firewall is registered as a listener on the kernel.request event;
2. at the beginning of the request, the Firewall checks the firewall map to see if any firewall should

be active for this URL;
3. If a firewall is found in the map for this URL, its listeners are notified
4. each listener checks to see if the current request contains any authentication information - a

listener may (a) authenticate a user, (b) throw an AuthenticationException, or (c) do nothing
(because there is no authentication information on the request);

5. Once a user is authenticated, you'll use Authorization to deny access to certain resources.

Read the next sections to find out more about Authentication and Authorization.

6. http://api.symfony.com/master/Symfony/Component/Security/Http/EntryPoint/AuthenticationEntryPointInterface.html

7. http://api.symfony.com/master/Symfony/Component/Security/Http/EntryPoint/AuthenticationEntryPointInterface.html#start()

8. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html

9. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html

PDF brought to you by
generated on February 20, 2013

Chapter 41: The Firewall and Security Context | 173

http://sensiolabs.com

Listing 42-1

Chapter 42

Authentication

When a request points to a secured area, and one of the listeners from the firewall map is able to
extract the user's credentials from the current Request1 object, it should create a token, containing these
credentials. The next thing the listener should do is ask the authentication manager to validate the given
token, and return an authenticated token if the supplied credentials were found to be valid. The listener
should then store the authenticated token in the security context:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

use Symfony\Component\Security\Http\Firewall\ListenerInterface;
use Symfony\Component\Security\Core\SecurityContextInterface;
use Symfony\Component\Security\Core\Authentication\AuthenticationManagerInterface;
use Symfony\Component\HttpKernel\Event\GetResponseEvent;
use Symfony\Component\Security\Core\Authentication\Token\UsernamePasswordToken;

class SomeAuthenticationListener implements ListenerInterface
{

/**
* @var SecurityContextInterface
*/
private $securityContext;

/**
* @var AuthenticationManagerInterface
*/
private $authenticationManager;

/**
* @var string Uniquely identifies the secured area
*/
private $providerKey;

// ...

public function handle(GetResponseEvent $event)
{

$request = $event->getRequest();

1. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html

PDF brought to you by
generated on February 20, 2013

Chapter 42: Authentication | 174

http://sensiolabs.com

Listing 42-2

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

$username = ...;
$password = ...;

$unauthenticatedToken = new UsernamePasswordToken(
$username,
$password,
$this->providerKey

);

$authenticatedToken = $this
->authenticationManager
->authenticate($unauthenticatedToken);

$this->securityContext->setToken($authenticatedToken);
}

}

A token can be of any class, as long as it implements TokenInterface2.

The Authentication Manager
The default authentication manager is an instance of AuthenticationProviderManager3:

1
2
3
4
5
6
7
8
9

10
11
12
13

use Symfony\Component\Security\Core\Authentication\AuthenticationProviderManager;

// instances of
Symfony\Component\Security\Core\Authentication\AuthenticationProviderInterface
$providers = array(...);

$authenticationManager = new AuthenticationProviderManager($providers);

try {
$authenticatedToken = $authenticationManager

->authenticate($unauthenticatedToken);
} catch (AuthenticationException $failed) {

// authentication failed
}

The AuthenticationProviderManager, when instantiated, receives several authentication providers,
each supporting a different type of token.

You may of course write your own authentication manager, it only has to implement
AuthenticationManagerInterface4.

2. http://api.symfony.com/master/Symfony/Component/Security/Core/Authentication/Token/TokenInterface.html

3. http://api.symfony.com/master/Symfony/Component/Security/Core/Authentication/AuthenticationProviderManager.html

4. http://api.symfony.com/master/Symfony/Component/Security/Core/Authentication/AuthenticationManagerInterface.html

PDF brought to you by
generated on February 20, 2013

Chapter 42: Authentication | 175

http://sensiolabs.com

Listing 42-3

Authentication providers
Each provider (since it implements AuthenticationProviderInterface5) has a method supports()6

by which the AuthenticationProviderManager can determine if it supports the given token. If this
is the case, the manager then calls the provider's method
AuthenticationProviderInterface::authenticate7. This method should return an authenticated
token or throw an AuthenticationException8 (or any other exception extending it).

Authenticating Users by their Username and Password

An authentication provider will attempt to authenticate a user based on the credentials he provided.
Usually these are a username and a password. Most web applications store their user's username and
a hash of the user's password combined with a randomly generated salt. This means that the average
authentication would consist of fetching the salt and the hashed password from the user data storage,
hash the password the user has just provided (e.g. using a login form) with the salt and compare both to
determine if the given password is valid.

This functionality is offered by the DaoAuthenticationProvider9. It fetches the user's data from a
UserProviderInterface`10, uses a PasswordEncoderInterface11 to create a hash of the password and
returns an authenticated token if the password was valid:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

use Symfony\Component\Security\Core\Authentication\Provider\DaoAuthenticationProvider;
use Symfony\Component\Security\Core\User\UserChecker;
use Symfony\Component\Security\Core\User\InMemoryUserProvider;
use Symfony\Component\Security\Core\Encoder\EncoderFactory;

$userProvider = new InMemoryUserProvider(
array(

'admin' => array(
// password is "foo"
'password' =>

'5FZ2Z8QIkA7UTZ4BYkoC+GsReLf569mSKDsfods6LYQ8t+a8EW9oaircfMpmaLbPBh4FOBiiFyLfuZmTSUwzZg==',
'roles' => array('ROLE_ADMIN'),

),
)

);

// for some extra checks: is account enabled, locked, expired, etc.?
$userChecker = new UserChecker();

// an array of password encoders (see below)
$encoderFactory = new EncoderFactory(...);

$provider = new DaoAuthenticationProvider(
$userProvider,
$userChecker,
'secured_area',
$encoderFactory

5. http://api.symfony.com/master/Symfony/Component/Security/Core/Authentication/Provider/AuthenticationProviderInterface.html

6. http://api.symfony.com/master/Symfony/Component/Security/Core/Authentication/Provider/

AuthenticationProviderInterface.html#supports()

7. http://api.symfony.com/master/Symfony/Component/Security/Core/Authentication/Provider/

AuthenticationProviderInterface::authenticate.html

8. http://api.symfony.com/master/Symfony/Component/Security/Core/Exception/AuthenticationException.html

9. http://api.symfony.com/master/Symfony/Component/Security/Core/Authentication/Provider/DaoAuthenticationProvider.html

10. http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserProviderInterface`.html

11. http://api.symfony.com/master/Symfony/Component/Security/Core/Encoder/PasswordEncoderInterface.html

PDF brought to you by
generated on February 20, 2013

Chapter 42: Authentication | 176

http://sensiolabs.com

Listing 42-4

Listing 42-5

28
29

);

$provider->authenticate($unauthenticatedToken);

The example above demonstrates the use of the "in-memory" user provider, but you may use any
user provider, as long as it implements UserProviderInterface12. It is also possible to let multiple
user providers try to find the user's data, using the ChainUserProvider13.

The Password encoder Factory

The DaoAuthenticationProvider14 uses an encoder factory to create a password encoder for a given
type of user. This allows you to use different encoding strategies for different types of users. The default
EncoderFactory15 receives an array of encoders:

1
2
3
4
5
6
7
8
9

10
11
12
13

use Symfony\Component\Security\Core\Encoder\EncoderFactory;
use Symfony\Component\Security\Core\Encoder\MessageDigestPasswordEncoder;

$defaultEncoder = new MessageDigestPasswordEncoder('sha512', true, 5000);
$weakEncoder = new MessageDigestPasswordEncoder('md5', true, 1);

$encoders = array(
'Symfony\\Component\\Security\\Core\\User\\User' => $defaultEncoder,
'Acme\\Entity\\LegacyUser' => $weakEncoder,
...,

);

$encoderFactory = new EncoderFactory($encoders);

Each encoder should implement PasswordEncoderInterface16 or be an array with a class and an
arguments key, which allows the encoder factory to construct the encoder only when it is needed.

Password Encoders

When the getEncoder()17 method of the password encoder factory is called with the user object as its
first argument, it will return an encoder of type PasswordEncoderInterface18 which should be used to
encode this user's password:

1
2
3
4
5
6
7
8
9

// fetch a user of type Acme\Entity\LegacyUser
$user = ...

$encoder = $encoderFactory->getEncoder($user);

// will return $weakEncoder (see above)

$encodedPassword = $encoder->encodePassword($password, $user->getSalt());

12. http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserProviderInterface.html

13. http://api.symfony.com/master/Symfony/Component/Security/Core/User/ChainUserProvider.html

14. http://api.symfony.com/master/Symfony/Component/Security/Core/Authentication/Provider/DaoAuthenticationProvider.html

15. http://api.symfony.com/master/Symfony/Component/Security/Core/Encoder/EncoderFactory.html

16. http://api.symfony.com/master/Symfony/Component/Security/Core/Encoder/PasswordEncoderInterface.html

17. http://api.symfony.com/master/Symfony/Component/Security/Core/Encoder/EncoderFactory.html#getEncoder()

18. http://api.symfony.com/master/Symfony/Component/Security/Core/Encoder/PasswordEncoderInterface.html

PDF brought to you by
generated on February 20, 2013

Chapter 42: Authentication | 177

http://sensiolabs.com

10
11
12
13
14
15

// check if the password is valid:

$validPassword = $encoder->isPasswordValid(
$user->getPassword(),
$password,
$user->getSalt());

PDF brought to you by
generated on February 20, 2013

Chapter 42: Authentication | 178

http://sensiolabs.com

Chapter 43

Authorization

When any of the authentication providers (see Authentication providers) has verified the still-
unauthenticated token, an authenticated token will be returned. The authentication listener should set
this token directly in the SecurityContextInterface1 using its setToken()2 method.

From then on, the user is authenticated, i.e. identified. Now, other parts of the application can use the
token to decide whether or not the user may request a certain URI, or modify a certain object. This
decision will be made by an instance of AccessDecisionManagerInterface3.

An authorization decision will always be based on a few things:

• The current token

For instance, the token's getRoles()4 method may be used to retrieve the roles of the
current user (e.g. ROLE_SUPER_ADMIN), or a decision may be based on the class of the
token.

• A set of attributes

Each attribute stands for a certain right the user should have, e.g. ROLE_ADMIN to make
sure the user is an administrator.

• An object (optional)

Any object on which for which access control needs to be checked, like an article or a
comment object.

Access Decision Manager
Since deciding whether or not a user is authorized to perform a certain action can be a complicated
process, the standard AccessDecisionManager5 itself depends on multiple voters, and makes a final

1. http://api.symfony.com/master/Symfony/Component/Security/Core/SecurityContextInterface.html

2. http://api.symfony.com/master/Symfony/Component/Security/Core/SecurityContextInterface.html#setToken()

3. http://api.symfony.com/master/Symfony/Component/Security/Core/Authorization/AccessDecisionManagerInterface.html

4. http://api.symfony.com/master/Symfony/Component/Security/Core/Authentication/Token/TokenInterface.html#getRoles()

5. http://api.symfony.com/master/Symfony/Component/Security/Core/Authorization/AccessDecisionManager.html

PDF brought to you by
generated on February 20, 2013

Chapter 43: Authorization | 179

http://sensiolabs.com

Listing 43-1

verdict based on all the votes (either positive, negative or neutral) it has received. It recognizes several
strategies:

• affirmativeaffirmative (default)

grant access as soon as any voter returns an affirmative response;

• consensusconsensus

grant access if there are more voters granting access than there are denying;

• unanimousunanimous

only grant access if none of the voters has denied access;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

use Symfony\Component\Security\Core\Authorization\AccessDecisionManager;

// instances of Symfony\Component\Security\Core\Authorization\Voter\VoterInterface
$voters = array(...);

// one of "affirmative", "consensus", "unanimous"
$strategy = ...;

// whether or not to grant access when all voters abstain
$allowIfAllAbstainDecisions = ...;

// whether or not to grant access when there is no majority (applies only to the
"consensus" strategy)
$allowIfEqualGrantedDeniedDecisions = ...;

$accessDecisionManager = new AccessDecisionManager(
$voters,
$strategy,
$allowIfAllAbstainDecisions,
$allowIfEqualGrantedDeniedDecisions

);

Voters
Voters are instances of VoterInterface6, which means they have to implement a few methods which
allows the decision manager to use them:

• supportsAttribute($attribute)supportsAttribute($attribute)

will be used to check if the voter knows how to handle the given attribute;

• supportsClass($class)supportsClass($class)

will be used to check if the voter is able to grant or deny access for an object of the given
class;

• vote(TokenInterface $token, $object, array $attributes)vote(TokenInterface $token, $object, array $attributes)

this method will do the actual voting and return a value equal to one of the class
constants of VoterInterface7, i.e. VoterInterface::ACCESS_GRANTED,
VoterInterface::ACCESS_DENIED or VoterInterface::ACCESS_ABSTAIN;

6. http://api.symfony.com/master/Symfony/Component/Security/Core/Authorization/Voter/VoterInterface.html

7. http://api.symfony.com/master/Symfony/Component/Security/Core/Authorization/Voter/VoterInterface.html

PDF brought to you by
generated on February 20, 2013

Chapter 43: Authorization | 180

http://sensiolabs.com

Listing 43-2

Listing 43-3

Listing 43-4

The security component contains some standard voters which cover many use cases:

AuthenticatedVoter

The AuthenticatedVoter8 voter supports the attributes IS_AUTHENTICATED_FULLY,
IS_AUTHENTICATED_REMEMBERED, and IS_AUTHENTICATED_ANONYMOUSLY and grants access based on the
current level of authentication, i.e. is the user fully authenticated, or only based on a "remember-me"
cookie, or even authenticated anonymously?

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

use Symfony\Component\Security\Core\Authentication\AuthenticationTrustResolver;

$anonymousClass = 'Symfony\Component\Security\Core\Authentication\Token\AnonymousToken';
$rememberMeClass = 'Symfony\Component\Security\Core\Authentication\Token\RememberMeToken';

$trustResolver = new AuthenticationTrustResolver($anonymousClass, $rememberMeClass);

$authenticatedVoter = new AuthenticatedVoter($trustResolver);

// instance of Symfony\Component\Security\Core\Authentication\Token\TokenInterface
$token = ...;

// any object
$object = ...;

$vote = $authenticatedVoter->vote($token, $object, array('IS_AUTHENTICATED_FULLY');

RoleVoter

The RoleVoter9 supports attributes starting with ROLE_ and grants access to the user when the required
ROLE_* attributes can all be found in the array of roles returned by the token's getRoles()10 method:

1
2
3
4
5

use Symfony\Component\Security\Core\Authorization\Voter\RoleVoter;

$roleVoter = new RoleVoter('ROLE_');

$roleVoter->vote($token, $object, 'ROLE_ADMIN');

RoleHierarchyVoter

The RoleHierarchyVoter11 extends RoleVoter12 and provides some additional functionality: it knows
how to handle a hierarchy of roles. For instance, a ROLE_SUPER_ADMIN role may have subroles
ROLE_ADMIN and ROLE_USER, so that when a certain object requires the user to have the ROLE_ADMIN
role, it grants access to users who in fact have the ROLE_ADMIN role, but also to users having the
ROLE_SUPER_ADMIN role:

1
2
3
4

use Symfony\Component\Security\Core\Authorization\Voter\RoleHierarchyVoter;
use Symfony\Component\Security\Core\Role\RoleHierarchy;

$hierarchy = array(

8. http://api.symfony.com/master/Symfony/Component/Security/Core/Authorization/Voter/AuthenticatedVoter.html

9. http://api.symfony.com/master/Symfony/Component/Security/Core/Authorization/Voter/RoleVoter.html

10. http://api.symfony.com/master/Symfony/Component/Security/Core/Authentication/Token/TokenInterface.html#getRoles()

11. http://api.symfony.com/master/Symfony/Component/Security/Core/Authorization/Voter/RoleHierarchyVoter.html

12. http://api.symfony.com/master/Symfony/Component/Security/Core/Authorization/Voter/RoleVoter.html

PDF brought to you by
generated on February 20, 2013

Chapter 43: Authorization | 181

http://sensiolabs.com

Listing 43-5

Listing 43-6

5
6
7
8
9

10

'ROLE_SUPER_ADMIN' => array('ROLE_ADMIN', 'ROLE_USER'),
);

$roleHierarchy = new RoleHierarchy($hierarchy);

$roleHierarchyVoter = new RoleHierarchyVoter($roleHierarchy);

When you make your own voter, you may of course use its constructor to inject any dependencies
it needs to come to a decision.

Roles
Roles are objects that give expression to a certain right the user has. The only requirement is that they
implement RoleInterface13, which means they should also have a getRole()14 method that returns a
string representation of the role itself. The default Role15 simply returns its first constructor argument:

1
2
3
4
5
6

use Symfony\Component\Security\Core\Role\Role;

$role = new Role('ROLE_ADMIN');

// will echo 'ROLE_ADMIN'
echo $role->getRole();

Most authentication tokens extend from AbstractToken16, which means that the roles given to its
constructor will be automatically converted from strings to these simple Role objects.

Using the decision manager

The Access Listener

The access decision manager can be used at any point in a request to decide whether or not the current
user is entitled to access a given resource. One optional, but useful, method for restricting access based
on a URL pattern is the AccessListener17, which is one of the firewall listeners (see Firewall listeners)
that is triggered for each request matching the firewall map (see A Firewall for HTTP Requests).

It uses an access map (which should be an instance of AccessMapInterface18) which contains request
matchers and a corresponding set of attributes that are required for the current user to get access to the
application:

13. http://api.symfony.com/master/Symfony/Component/Security/Core/Role/RoleInterface.html

14. http://api.symfony.com/master/Symfony/Component/Security/Core/Role/Role/RoleInterface.html#getRole()

15. http://api.symfony.com/master/Symfony/Component/Security/Core/Role/Role.html

16. http://api.symfony.com/master/Symfony/Component/Security/Core/Authentication/Token/AbstractToken.html

17. http://api.symfony.com/master/Symfony/Component/Security/Http/Firewall/AccessListener.html

18. http://api.symfony.com/master/Symfony/Component/Security/Http/AccessMapInterface.html

PDF brought to you by
generated on February 20, 2013

Chapter 43: Authorization | 182

http://sensiolabs.com

Listing 43-7

1
2
3
4
5
6
7
8
9

10
11
12
13
14

use Symfony\Component\Security\Http\AccessMap;
use Symfony\Component\HttpFoundation\RequestMatcher;
use Symfony\Component\Security\Http\Firewall\AccessListener;

$accessMap = new AccessMap();
$requestMatcher = new RequestMatcher('^/admin');
$accessMap->add($requestMatcher, array('ROLE_ADMIN'));

$accessListener = new AccessListener(
$securityContext,
$accessDecisionManager,
$accessMap,
$authenticationManager

);

Security context

The access decision manager is also available to other parts of the application via the isGranted()19

method of the SecurityContext20. A call to this method will directly delegate the question to the access
decision manager:

1
2
3
4
5
6
7
8
9

10
11

use Symfony\Component\Security\SecurityContext;
use Symfony\Component\Security\Core\Exception\AccessDeniedException;

$securityContext = new SecurityContext(
$authenticationManager,
$accessDecisionManager

);

if (!$securityContext->isGranted('ROLE_ADMIN')) {
throw new AccessDeniedException();

}

19. http://api.symfony.com/master/Symfony/Component/Security/Core/SecurityContext.html#isGranted()

20. http://api.symfony.com/master/Symfony/Component/Security/Core/SecurityContext.html

PDF brought to you by
generated on February 20, 2013

Chapter 43: Authorization | 183

http://sensiolabs.com

Chapter 44

The Serializer Component

The Serializer Component is meant to be used to turn objects into a specific format (XML,
JSON, Yaml, ...) and the other way around.

In order to do so, the Serializer Component follows the following simple schema.

As you can see in the picture above, an array is used as a man in the middle. This way, Encoders will only
deal with turning specific formats into arrays and vice versa. The same way, Normalizers will deal with
turning specific objects into arrays and vice versa.

Serialization is a complicated topic, and while this component may not work in all cases, it can be a useful
tool while developing tools to serialize and deserialize your objects.

Installation
You can install the component in many different ways:

• Use the official Git repository (https://github.com/symfony/Serializer1);
• Install it via Composer (symfony/serializer on Packagist2).

PDF brought to you by
generated on February 20, 2013

Chapter 44: The Serializer Component | 184

http://sensiolabs.com

Listing 44-1

Listing 44-2

Listing 44-3

Usage
Using the Serializer component is really simple. You just need to set up the Serializer3 specifying which
Encoders and Normalizer are going to be available:

1
2
3
4
5
6
7
8
9

use Symfony\Component\Serializer\Serializer;
use Symfony\Component\Serializer\Encoder\XmlEncoder;
use Symfony\Component\Serializer\Encoder\JsonEncoder;
use Symfony\Component\Serializer\Normalizer\GetSetMethodNormalizer;

$encoders = array(new XmlEncoder(), new JsonEncoder());
$normalizers = array(new GetSetMethodNormalizer());

$serializer = new Serializer($normalizers, $encoders);

Serializing an object

For the sake of this example, assume the following class already exists in your project:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

namespace Acme;

class Person
{

private $age;
private $name;

// Getters
public function getName()
{

return $this->name;
}

public function getAge()
{

return $this->age;
}

// Setters
public function setName($name)
{

$this->name = $name;
}

public function setAge($age)
{

$this->age = $age;
}

}

Now, if you want to serialize this object into JSON, you only need to use the Serializer service created
before:

1. https://github.com/symfony/Serializer

2. https://packagist.org/packages/symfony/serializer

3. http://api.symfony.com/master/Symfony/Component/Serializer/Serializer.html

PDF brought to you by
generated on February 20, 2013

Chapter 44: The Serializer Component | 185

http://sensiolabs.com

Listing 44-4

1
2
3
4
5

$person = new Acme\Person();
$person->setName('foo');
$person->setAge(99);

$serializer->serialize($person, 'json'); // Output: {"name":"foo","age":99}

The first parameter of the serialize()4 is the object to be serialized and the second is used to choose
the proper encoder, in this case JsonEncoder5.

Deserializing an Object

Let's see now how to do the exactly the opposite. This time, the information of the People class would be
encoded in XML format:

1
2
3
4
5
6
7
8

$data = <<<EOF
<person>

<name>foo</name>
<age>99</age>

</person>
EOF;

$person = $serializer->deserialize($data,'Acme\Person','xml');

In this case, deserialize()6 needs three parameters:
1. The information to be decoded
2. The name of the class this information will be decoded to
3. The encoder used to convert that information into an array

JMSSerializer

A popular third-party library, JMS serializer7, provides a more sophisticated albeit more complex
solution. This library includes the ability to configure how your objects should be serialize/deserialized
via annotations (as well as YML, XML and PHP), integration with the Doctrine ORM, and handling of
other complex cases (e.g. circular references).

4. http://api.symfony.com/master/Symfony/Component/Serializer/Serializer.html#serialize()

5. http://api.symfony.com/master/Symfony/Component/Serializer/Encoder/JsonEncoder.html

6. http://api.symfony.com/master/Symfony/Component/Serializer/Serializer.html#deserialize()

7. https://github.com/schmittjoh/serializer

PDF brought to you by
generated on February 20, 2013

Chapter 44: The Serializer Component | 186

http://sensiolabs.com

Listing 45-1

Chapter 45

The Stopwatch Component

Stopwatch component provides a way to profile code.

New in version 2.2: The Stopwatch Component is new to Symfony 2.2. Previously, the Stopwatch
class was located in the HttpKernel component (and was new in 2.1).

Installation
You can install the component in two different ways:

• Use the official Git repository (https://github.com/symfony/Stopwatch1);
• Install it via Composer (symfony/stopwatch on Packagist2).

Usage
The Stopwatch component provides an easy and consistent way to measure execution time of certain
parts of code so that you don't constantly have to parse microtime by yourself. Instead, use the simple
Stopwatch3 class:

1
2
3
4
5

use Symfony\Component\Stopwatch\Stopwatch;

$stopwatch = new Stopwatch();
// Start event named 'eventName'
$stopwatch->start('eventName');

1. https://github.com/symfony/Stopwatch

2. https://packagist.org/packages/symfony/stopwatch

3. http://api.symfony.com/master/Symfony/Component/Stopwatch/Stopwatch.html

PDF brought to you by
generated on February 20, 2013

Chapter 45: The Stopwatch Component | 187

http://sensiolabs.com

Listing 45-2

Listing 45-3

Listing 45-4

Listing 45-5

Listing 45-6

6
7

// ... some code goes here
$event = $stopwatch->stop('eventName');

You can also provide a category name to an event:

1 $stopwatch->start('eventName', 'categoryName');

You can consider categories as a way of tagging events. For example, the Symfony Profiler tool uses
categories to nicely color-code different events.

Periods
As you know from the real world, all stopwatches come with two buttons: one to start and stop
the stopwatch, and another to measure the lap time. This is exactly what the
:method:Symfony\\Component\\Stopwatch\\Stopwatch::lap method does:

1
2
3
4
5
6
7
8
9

$stopwatch = new Stopwatch();
// Start event named 'foo'
$stopwatch->start('foo');
// ... some code goes here
$stopwatch->lap('foo');
// ... some code goes here
$stopwatch->lap('foo');
// ... some other code goes here
$event = $stopwatch->stop('foo');

Lap information is stored as "periods" within the event. To get lap information call:

1 $event->getPeriods();

In addition to periods, you can get other useful information from the event object. For example:

1
2
3
4
5
6
7

$event->getCategory(); // Returns the category the event was started in
$event->getOrigin(); // Returns the event start time in milliseconds
$event->ensureStopped(); // Stops all periods not already stopped
$event->getStartTime(); // Returns the start time of the very first period
$event->getEndTime(); // Returns the end time of the very last period
$event->getDuration(); // Returns the event duration, including all periods
$event->getMemory(); // Returns the max memory usage of all periods

Sections
Sections are a way to logically split the timeline into groups. You can see how Symfony uses sections to
nicely visualize the framework lifecycle in the Symfony Profiler tool. Here is a basic usage example using
sections:

1
2
3
4

$stopwatch = new Stopwatch();

$stopwatch->openSection();
$stopwatch->start('parsing_config_file', 'filesystem_operations');

PDF brought to you by
generated on February 20, 2013

Chapter 45: The Stopwatch Component | 188

http://sensiolabs.com

Listing 45-7

5
6
7

$stopwatch->stopSection('routing');

$events = $stopwatch->getSectionEvents('routing');

You can reopen a closed section by calling the
:method:Symfony\\Component\\Stopwatch\\Stopwatch::openSection method and specifying the id
of the section to be reopened:

1
2
3

$stopwatch->openSection('routing');
$stopwatch->start('building_config_tree');
$stopwatch->stopSection('routing');

PDF brought to you by
generated on February 20, 2013

Chapter 45: The Stopwatch Component | 189

http://sensiolabs.com

Listing 46-1

Chapter 46

The Templating Component

Templating provides all the tools needed to build any kind of template system.

It provides an infrastructure to load template files and optionally monitor them for changes. It
also provides a concrete template engine implementation using PHP with additional tools for
escaping and separating templates into blocks and layouts.

Installation
You can install the component in many different ways:

• Use the official Git repository (https://github.com/symfony/Templating1);
• Install it via Composer (symfony/templating on Packagist2).

Usage
The PhpEngine3 class is the entry point of the component. It needs a template name parser
(TemplateNameParserInterface4) to convert a template name to a template reference and template
loader (LoaderInterface5) to find the template associated to a reference:

1
2
3
4
5
6
7

use Symfony\Component\Templating\PhpEngine;
use Symfony\Component\Templating\TemplateNameParser;
use Symfony\Component\Templating\Loader\FilesystemLoader;

$loader = new FilesystemLoader(__DIR__ . '/views/%name%');

$view = new PhpEngine(new TemplateNameParser(), $loader);

1. https://github.com/symfony/Templating

2. https://packagist.org/packages/symfony/templating

3. http://api.symfony.com/master/Symfony/Component/Templating/PhpEngine.html

4. http://api.symfony.com/master/Symfony/Component/Templating/TemplateNameParserInterface.html

5. http://api.symfony.com/master/Symfony/Component/Templating/Loader/LoaderInterface.html

PDF brought to you by
generated on February 20, 2013

Chapter 46: The Templating Component | 190

http://sensiolabs.com

Listing 46-2

Listing 46-3

Listing 46-4

Listing 46-5

8
9 echo $view->render('hello.php', array('firstname' => 'Fabien'));

The render()6 method executes the file views/hello.php and returns the output text.

1
2

<!-- views/hello.php -->
Hello, <?php echo $firstname ?>!

Template Inheritance with Slots
The template inheritance is designed to share layouts with many templates.

1
2
3
4
5
6
7
8
9

<!-- views/layout.php -->
<html>

<head>
<title><?php $view['slots']->output('title', 'Default title') ?></title>

</head>
<body>

<?php $view['slots']->output('_content') ?>
</body>

</html>

The extend()7 method is called in the sub-template to set its parent template.

1
2
3
4
5
6
7
8
9

10
11

<!-- views/page.php -->
<?php $view->extend('layout.php') ?>

<?php $view['slots']->set('title', $page->title) ?>

<h1>
<?php echo $page->title ?>

</h1>
<p>

<?php echo $page->body ?>
</p>

To use template inheritance, the SlotsHelper8 helper must be registered:

1
2
3
4
5
6
7
8

use Symfony\Component\Templating\Helper\SlotsHelper;

$view->set(new SlotsHelper());

// Retrieve page object
$page = ...;

echo $view->render('page.php', array('page' => $page));

6. http://api.symfony.com/master/Symfony/Component/Templating/PhpEngine.html#render()

7. http://api.symfony.com/master/Symfony/Component/Templating/PhpEngine.html#extend()

8. http://api.symfony.com/master/Symfony/Component/Templating/Helper/SlotsHelper.html

PDF brought to you by
generated on February 20, 2013

Chapter 46: The Templating Component | 191

http://sensiolabs.com

Multiple levels of inheritance is possible: a layout can extend an other layout.

Output Escaping
This documentation is still being written.

The Asset Helper
This documentation is still being written.

PDF brought to you by
generated on February 20, 2013

Chapter 46: The Templating Component | 192

http://sensiolabs.com

Chapter 47

The YAML Component

The YAML Component loads and dumps YAML files.

What is it?
The Symfony2 YAML Component parses YAML strings to convert them to PHP arrays. It is also able to
convert PHP arrays to YAML strings.

YAML1, YAML Ain't Markup Language, is a human friendly data serialization standard for all
programming languages. YAML is a great format for your configuration files. YAML files are as
expressive as XML files and as readable as INI files.

The Symfony2 YAML Component implements the YAML 1.2 version of the specification.

Learn more about the Yaml component in the The YAML Format article.

Installation
You can install the component in many different ways:

• Use the official Git repository (https://github.com/symfony/Yaml2);
• Install it via Composer (symfony/yaml on Packagist3).

1. http://yaml.org/

2. https://github.com/symfony/Yaml

3. https://packagist.org/packages/symfony/yaml

PDF brought to you by
generated on February 20, 2013

Chapter 47: The YAML Component | 193

http://sensiolabs.com

Listing 47-1

Why?

Fast

One of the goal of Symfony YAML is to find the right balance between speed and features. It supports
just the needed feature to handle configuration files.

Real Parser

It sports a real parser and is able to parse a large subset of the YAML specification, for all your
configuration needs. It also means that the parser is pretty robust, easy to understand, and simple enough
to extend.

Clear error messages

Whenever you have a syntax problem with your YAML files, the library outputs a helpful message with
the filename and the line number where the problem occurred. It eases the debugging a lot.

Dump support

It is also able to dump PHP arrays to YAML with object support, and inline level configuration for pretty
outputs.

Types Support

It supports most of the YAML built-in types like dates, integers, octals, booleans, and much more...

Full merge key support

Full support for references, aliases, and full merge key. Don't repeat yourself by referencing common
configuration bits.

Using the Symfony2 YAML Component
The Symfony2 YAML Component is very simple and consists of two main classes: one parses YAML
strings (Parser4), and the other dumps a PHP array to a YAML string (Dumper5).

On top of these two classes, the Yaml6 class acts as a thin wrapper that simplifies common uses.

Reading YAML Files

The parse()7 method parses a YAML string and converts it to a PHP array:

1
2
3
4
5

use Symfony\Component\Yaml\Parser;

$yaml = new Parser();

$value = $yaml->parse(file_get_contents('/path/to/file.yml'));

4. http://api.symfony.com/master/Symfony/Component/Yaml/Parser.html

5. http://api.symfony.com/master/Symfony/Component/Yaml/Dumper.html

6. http://api.symfony.com/master/Symfony/Component/Yaml/Yaml.html

7. http://api.symfony.com/master/Symfony/Component/Yaml/Parser.html#parse()

PDF brought to you by
generated on February 20, 2013

Chapter 47: The YAML Component | 194

http://sensiolabs.com

Listing 47-2

Listing 47-3

Listing 47-4

If an error occurs during parsing, the parser throws a ParseException8 exception indicating the error
type and the line in the original YAML string where the error occurred:

1
2
3
4
5
6
7

use Symfony\Component\Yaml\Exception\ParseException;

try {
$value = $yaml->parse(file_get_contents('/path/to/file.yml'));

} catch (ParseException $e) {
printf("Unable to parse the YAML string: %s", $e->getMessage());

}

As the parser is re-entrant, you can use the same parser object to load different YAML strings.

When loading a YAML file, it is sometimes better to use the parse()9 wrapper method:

1
2
3

use Symfony\Component\Yaml\Yaml;

$yaml = Yaml::parse('/path/to/file.yml');

The parse()10 static method takes a YAML string or a file containing YAML. Internally, it calls the
parse()11 method, but enhances the error if something goes wrong by adding the filename to the
message.

Executing PHP Inside YAML Files

New in version 2.1: The Yaml::enablePhpParsing() method is new to Symfony 2.1. Prior to 2.1,
PHP was always executed when calling the parse() function.

By default, if you include PHP inside a YAML file, it will not be parsed. If you do want PHP to be parsed,
you must call Yaml::enablePhpParsing() before parsing the file to activate this mode. If you only want
to allow PHP code for a single YAML file, be sure to disable PHP parsing after parsing the single file by
calling Yaml::$enablePhpParsing = false; ($enablePhpParsing is a public property).

Writing YAML Files

The dump()12 method dumps any PHP array to its YAML representation:

1
2
3
4
5
6
7

use Symfony\Component\Yaml\Dumper;

$array = array(
'foo' => 'bar',
'bar' => array('foo' => 'bar', 'bar' => 'baz')

);

8. http://api.symfony.com/master/Symfony/Component/Yaml/Exception/ParseException.html

9. http://api.symfony.com/master/Symfony/Component/Yaml/Yaml.html#parse()

10. http://api.symfony.com/master/Symfony/Component/Yaml/Yaml.html#parse()

11. http://api.symfony.com/master/Symfony/Component/Yaml/Parser.html#parse()

12. http://api.symfony.com/master/Symfony/Component/Yaml/Dumper.html#dump()

PDF brought to you by
generated on February 20, 2013

Chapter 47: The YAML Component | 195

http://sensiolabs.com

Listing 47-5

Listing 47-6

Listing 47-7

Listing 47-8

Listing 47-9

Listing 47-10

8
9

10
11
12

$dumper = new Dumper();

$yaml = $dumper->dump($array);

file_put_contents('/path/to/file.yml', $yaml);

Of course, the Symfony2 YAML dumper is not able to dump resources. Also, even if the dumper is
able to dump PHP objects, it is considered to be a not supported feature.

If an error occurs during the dump, the parser throws a DumpException13 exception.

If you only need to dump one array, you can use the dump()14 static method shortcut:

1
2
3

use Symfony\Component\Yaml\Yaml;

$yaml = Yaml::dump($array, $inline);

The YAML format supports two kind of representation for arrays, the expanded one, and the inline one.
By default, the dumper uses the inline representation:

1 { foo: bar, bar: { foo: bar, bar: baz } }

The second argument of the dump()15 method customizes the level at which the output switches from the
expanded representation to the inline one:

1 echo $dumper->dump($array, 1);

1
2

foo: bar
bar: { foo: bar, bar: baz }

1 echo $dumper->dump($array, 2);

1
2
3
4

foo: bar
bar:

foo: bar
bar: baz

13. http://api.symfony.com/master/Symfony/Component/Yaml/Exception/DumpException.html

14. http://api.symfony.com/master/Symfony/Component/Yaml/Yaml.html#dump()

15. http://api.symfony.com/master/Symfony/Component/Yaml/Dumper.html#dump()

PDF brought to you by
generated on February 20, 2013

Chapter 47: The YAML Component | 196

http://sensiolabs.com

Listing 48-1

Listing 48-2

Listing 48-3

Listing 48-4

Chapter 48

The YAML Format

According to the official YAML1 website, YAML is "a human friendly data serialization standard for all
programming languages".

Even if the YAML format can describe complex nested data structure, this chapter only describes the
minimum set of features needed to use YAML as a configuration file format.

YAML is a simple language that describes data. As PHP, it has a syntax for simple types like strings,
booleans, floats, or integers. But unlike PHP, it makes a difference between arrays (sequences) and hashes
(mappings).

Scalars
The syntax for scalars is similar to the PHP syntax.

Strings

1 A string in YAML

1 'A singled-quoted string in YAML'

In a single quoted string, a single quote ' must be doubled:

1 'A single quote '' in a single-quoted string'

1 "A double-quoted string in YAML\n"

1. http://yaml.org/

PDF brought to you by
generated on February 20, 2013

Chapter 48: The YAML Format | 197

http://sensiolabs.com

Listing 48-5

Listing 48-6

Listing 48-7

Listing 48-8

Listing 48-9

Listing 48-10

Listing 48-11

Listing 48-12

Quoted styles are useful when a string starts or ends with one or more relevant spaces.

The double-quoted style provides a way to express arbitrary strings, by using \ escape sequences.
It is very useful when you need to embed a \n or a unicode character in a string.

When a string contains line breaks, you can use the literal style, indicated by the pipe (|), to indicate that
the string will span several lines. In literals, newlines are preserved:

1
2
3

|
\/ /| |\/| |
/ / | | | |__

Alternatively, strings can be written with the folded style, denoted by >, where each line break is replaced
by a space:

1
2
3
4
5

>
This is a very long sentence
that spans several lines in the YAML
but which will be rendered as a string
without carriage returns.

Notice the two spaces before each line in the previous examples. They won't appear in the resulting
PHP strings.

Numbers

1
2

an integer
12

1
2

an octal
014

1
2

an hexadecimal
0xC

1
2

a float
13.4

1
2

an exponential number
1.2e+34

1
2

infinity
.inf

PDF brought to you by
generated on February 20, 2013

Chapter 48: The YAML Format | 198

http://sensiolabs.com

Listing 48-13

Listing 48-14

Listing 48-15

Listing 48-16

Listing 48-17

Listing 48-18

Listing 48-19

Nulls

Nulls in YAML can be expressed with null or -.

Booleans

Booleans in YAML are expressed with true and false.

Dates

YAML uses the ISO-8601 standard to express dates:

1 2001-12-14t21:59:43.10-05:00

1
2

simple date
2002-12-14

Collections
A YAML file is rarely used to describe a simple scalar. Most of the time, it describes a collection. A
collection can be a sequence or a mapping of elements. Both sequences and mappings are converted to
PHP arrays.

Sequences use a dash followed by a space:

1
2
3

- PHP
- Perl
- Python

The previous YAML file is equivalent to the following PHP code:

1 array('PHP', 'Perl', 'Python');

Mappings use a colon followed by a space (:) to mark each key/value pair:

1
2
3

PHP: 5.2
MySQL: 5.1
Apache: 2.2.20

which is equivalent to this PHP code:

1 array('PHP' => 5.2, 'MySQL' => 5.1, 'Apache' => '2.2.20');

In a mapping, a key can be any valid scalar.

The number of spaces between the colon and the value does not matter:

PDF brought to you by
generated on February 20, 2013

Chapter 48: The YAML Format | 199

http://sensiolabs.com

Listing 48-20

Listing 48-21

Listing 48-22

Listing 48-23

Listing 48-24

Listing 48-25

Listing 48-26

1
2
3

PHP: 5.2
MySQL: 5.1
Apache: 2.2.20

YAML uses indentation with one or more spaces to describe nested collections:

1
2
3
4
5
6

"symfony 1.0":
PHP: 5.0
Propel: 1.2

"symfony 1.2":
PHP: 5.2
Propel: 1.3

The following YAML is equivalent to the following PHP code:

1
2
3
4
5
6
7
8
9

10

array(
'symfony 1.0' => array(

'PHP' => 5.0,
'Propel' => 1.2,

),
'symfony 1.2' => array(

'PHP' => 5.2,
'Propel' => 1.3,

),
);

There is one important thing you need to remember when using indentation in a YAML file: Indentation
must be done with one or more spaces, but never with tabulations.

You can nest sequences and mappings as you like:

1
2
3
4
5
6

'Chapter 1':
- Introduction
- Event Types

'Chapter 2':
- Introduction
- Helpers

YAML can also use flow styles for collections, using explicit indicators rather than indentation to denote
scope.

A sequence can be written as a comma separated list within square brackets ([]):

1 [PHP, Perl, Python]

A mapping can be written as a comma separated list of key/values within curly braces ({}):

1 { PHP: 5.2, MySQL: 5.1, Apache: 2.2.20 }

You can mix and match styles to achieve a better readability:

1
2

'Chapter 1': [Introduction, Event Types]
'Chapter 2': [Introduction, Helpers]

PDF brought to you by
generated on February 20, 2013

Chapter 48: The YAML Format | 200

http://sensiolabs.com

Listing 48-27

1
2

"symfony 1.0": { PHP: 5.0, Propel: 1.2 }
"symfony 1.2": { PHP: 5.2, Propel: 1.3 }

Comments
Comments can be added in YAML by prefixing them with a hash mark (#):

1
2
3

Comment on a line
"symfony 1.0": { PHP: 5.0, Propel: 1.2 } # Comment at the end of a line
"symfony 1.2": { PHP: 5.2, Propel: 1.3 }

Comments are simply ignored by the YAML parser and do not need to be indented according to
the current level of nesting in a collection.

PDF brought to you by
generated on February 20, 2013

Chapter 48: The YAML Format | 201

http://sensiolabs.com

	The Components Book for Symfony master generated on February 20, 2013
	

	Contents at a Glance
	How to Install and Use the Symfony2 Components
	Using the Finder Component
	Now What?

	The ClassLoader Component
	Installation
	Usage

	The Config Component
	Introduction
	Installation
	Sections

	Loading resources
	Locating resources
	Resource loaders
	Finding the right loader

	Caching based on resources
	Defining and processing configuration values
	Validating configuration values
	Defining a hierarchy of configuration values using the TreeBuilder
	Adding node definitions to the tree
	Variable nodes
	Node type
	Numeric node constraints
	Array nodes
	Array node options

	Default and required values
	Optional Sections
	Merging options
	Appending sections
	Normalization
	Validation rules
	Processing configuration values

	The Console Component
	Installation
	Creating a basic Command
	Coloring the Output

	Using Command Arguments
	Using Command Options
	Console Helpers
	Testing Commands
	Calling an existing Command
	Learn More!

	Using Console Commands, Shortcuts and Built-in Commands
	Built-in Commands
	Global Options
	Shortcut Syntax

	Building a Single Command Application
	Dialog Helper
	Asking the User for confirmation
	Asking the User for Information
	Hiding the User's Response

	Validating the Answer
	Hiding the User's Response
	Let the user choose from a list of Answers

	Formatter Helper
	Print Messages in a Section
	Print Messages in a Block

	Progress Helper
	The CssSelector Component
	Installation
	Usage
	Why use CSS selectors?
	The CssSelector component
	Limitations of the CssSelector component

	The DomCrawler Component
	Installation
	Usage
	Node Filtering
	Node Traversing
	Accessing Node Values
	Adding the Content
	Form and Link support
	Links
	Forms

	The Dependency Injection Component
	Installation
	Basic Usage
	Avoiding Your Code Becoming Dependent on the Container
	Setting Up the Container with Configuration Files

	Types of Injection
	Constructor Injection
	Setter Injection
	Property Injection

	Working with Container Parameters and Definitions
	Getting and Setting Container Parameters
	Getting and Setting Service Definitions
	Working with a definition
	Creating a new definition
	Class
	Constructor Arguments
	Method Calls

	Compiling the Container
	Managing Configuration with Extensions
	Prepending Configuration passed to the Extension
	Creating a Compiler Pass
	Registering a Compiler Pass
	Controlling the Pass Ordering

	Dumping the Configuration for Performance

	Working with Tagged Services
	Define Services with a Custom Tag
	Create a CompilerPass
	Register the Pass with the Container
	Adding additional attributes on Tags

	Using a Factory to Create Services
	Passing Arguments to the Factory Method

	Configuring Services with a Service Configurator
	Configurator Service Config

	Managing Common Dependencies with Parent Services
	Overriding Parent Dependencies
	Collections of Dependencies

	Advanced Container Configuration
	Marking Services as public / private
	Aliasing
	Requiring files

	Container Building Workflow
	Working with cached Container
	Application-level Configuration
	Bundle-level Configuration with Extensions
	Compiler passes to allow Interaction between Bundles
	Compilation and Caching

	The Event Dispatcher Component
	Introduction
	Installation
	Usage
	Events
	Naming Conventions
	Event Names and Event Objects

	The Dispatcher
	Connecting Listeners
	Creating and Dispatching an Event
	The Static Events Class
	Creating an Event object
	Dispatch the Event

	Using Event Subscribers
	Stopping Event Flow/Propagation
	EventDispatcher aware Events and Listeners
	Dispatcher Shortcuts
	Event Name Introspection

	The Generic Event Object
	The Container Aware Event Dispatcher
	Introduction
	Setup
	Adding Listeners
	Adding Services
	Adding Subscriber Services

	The Filesystem Component
	Installation
	Usage
	Mkdir
	Exists
	Copy
	Touch
	Chown
	Chgrp
	Chmod
	Remove
	Rename
	symlink
	makePathRelative
	mirror
	isAbsolutePath

	Error Handling

	The Finder Component
	Installation
	Usage
	Criteria
	Location
	Files or Directories
	Sorting
	File Name
	File Contents
	Path
	File Size
	File Date
	Directory Depth
	Custom Filtering
	Reading contents of returned files

	The HttpFoundation Component
	Installation
	Request
	Accessing Request Data
	Identifying a Request
	Simulating a Request
	Accessing the Session
	Accessing Accept-* Headers Data
	Accessing other Data

	Response
	Sending the Response
	Setting Cookies
	Managing the HTTP Cache
	Redirecting the User
	Streaming a Response
	Downloading Files
	Creating a JSON Response

	Session

	Session Management
	Session API
	Session Data Management
	Attributes
	Flash messages

	Configuring Sessions and Save Handlers
	Save Handlers
	Native PHP Save Handlers
	Custom Save Handlers

	Configuring PHP Sessions
	Session Cookie Lifetime
	Configuring Garbage Collection
	Session Lifetime
	Session Idle Time/Keep Alive
	Session meta-data
	PHP 5.4 compatibility
	Save Handler Proxy

	Testing with Sessions
	Unit Testing
	Functional Testing

	Trusting Proxies
	Configuring Header Names
	Not trusting certain Headers

	The HttpKernel Component
	Installation
	The Workflow of a Request
	HttpKernel: Driven by Events
	1) The kernel.request event
	2) Resolve the Controller

	3) The kernel.controller event
	4) Getting the Controller Arguments
	5) Calling the Controller
	6) The kernel.view event
	7) The kernel.response event
	8) The kernel.terminate event
	Handling Exceptions:: the kernel.exception event

	Creating an Event Listener
	A Full Working Example
	Sub Requests

	The Locale Component
	Installation
	Usage

	The Process Component
	Installation
	Usage

	The Routing Component
	Installation
	Usage
	Defining routes
	Using Prefixes
	Set the Request Parameters
	Generate a URL
	Load Routes from a File
	Routes as Closures
	Routes as Annotations

	The all-in-one Router

	How to match a route based on the Host
	Placeholders and Requirements in Hostname Patterns
	Adding a Host Regex to Imported Routes

	The Security Component
	Introduction
	Installation
	Sections

	The Firewall and Security Context
	A Firewall for HTTP Requests
	Firewall listeners
	Exception listener
	Entry points

	Flow: Firewall, Authentication, Authorization

	Authentication
	The Authentication Manager
	Authentication providers
	Authenticating Users by their Username and Password
	The Password encoder Factory
	Password Encoders

	Authorization
	Access Decision Manager
	Voters
	AuthenticatedVoter
	RoleVoter
	RoleHierarchyVoter

	Roles
	Using the decision manager
	The Access Listener
	Security context

	The Serializer Component
	Installation
	Usage
	Serializing an object
	Deserializing an Object

	JMSSerializer

	The Stopwatch Component
	Installation
	Usage
	Periods
	Sections

	The Templating Component
	Installation
	Usage
	Template Inheritance with Slots
	Output Escaping
	The Asset Helper

	The YAML Component
	What is it?
	Installation
	Why?
	Fast
	Real Parser
	Clear error messages
	Dump support
	Types Support
	Full merge key support

	Using the Symfony2 YAML Component
	Reading YAML Files
	Executing PHP Inside YAML Files
	Writing YAML Files

	The YAML Format
	Scalars
	Strings
	Numbers
	Nulls
	Booleans
	Dates

	Collections
	Comments

